
Metabolism

- 1. Define metabolism.
 - All the reactions that occur inside the cell.
- 2. Name the molecule that controls each step in a metabolic pathway.
 - Enzyme
- 3. Draw a metabolic pathway and label the 3 possible steps involved in a metabolic pathway.

4. In the following metabolic pathway state the following if enzyme 2 is inhibited.

- (i) Concentration of B increases
- (ii) Concentration of C/D/E decreases
- (iii) Concentration of A stays constant
- (iv) Which enzyme would require to be inhibited to ensure accumulation of metabolite D Enzyme 4
- 5. Name the two types of metabolic pathways.
 - Catabolic and anabolic
- 6. What metabolic pathway releases energy

Catabolic

- 7. Are reactions involving biosynthesis anabolic or catabolic
 - Anabolic
- 8. Are the following reactions catabolic or anabolic
 - ATP being converted to ADP
 - catabolic

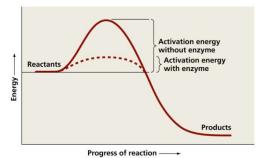
(i)

- (ii) Glycolysis
- Catabolic
- (iii) Proteins being produced from amino acids
 - anabolic
- (iv) Producing glucose from glycogen
 - catabolic

Compartmentalised membranes & proteins

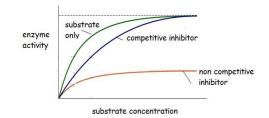
- 9. State two examples of compartmentalised membranes
 - Mitochondria or chloroplasts
- 10. State the effect of compartmentalised membranes on the surface area: volume ratio
 - Increases surface area: volume ratio
- 11. State the effect of compartmentalised membranes on reaction rate.
 - Increase reaction rate

12. Name the three types of protein found in the membrane


Pores, pumps and enzymes

- 13. What type of protein is involved in active transport
 - Pumps

-


Enzymes

- 14. Define induced fit in terms of enzymes and substrates (2 marks).
 - Active site changes shape after <u>substrate has bound</u> to active site.
- 15. State the effect of enzymes on activation energy and draw a graph to summarise this.

- 16. State the affinity the substrate and product has for the active site.
 - Substrate high affinity
 - Product low affinity
- 17. Explain how the enzyme ensures correct orientation of the substrate.
 - Active site
- 18. Does a high concentration of product promote the forward or backward reaction.
 - Backward reaction
- 19. Do inhibitors increase or decrease enzyme activity.
 - Decrease enzyme activity
- 20. Name the three types of enzyme inhibitors.
 - Competitive inhibitor
 - Non competitive inhibitor
 - Feedback inhibition
- 21. Define a competitive inhibitor.
 - Binds at the active site instead of the substrate.
- 22. Define a non competitive inhibitor.
 - Binds away from the active site changing the shape of the active site preventing substrate from binding.
- 23. Which type of inhibitor is reversible.
 - Competitive inhibitor
- 24. Explain how this type of inhibitor's effect is reversed.
 - Increasing substrate concentration

25. Draw a graph of enzyme activity against substrate concentration for a control/competitive inhibitor and non competitive inhibitor.

- 26. Are heavy metals such as lead or mercury competitive or non competitive inhibitors.
 Non competitive inhibitors
- 27. What substance is inhibited during feedback inhibition.
 - First enzyme in pathway
- 28. Draw a metabolic pathway diagram summarising feedback inhibition.

Start of	adiata — N Intarm	nediate
pathway	iediate Intern	rediate Product
Enzyme 1	Enzyme 2	Enzyme 3
Ţ	Feedback inhibi	ition:
Pre	esence of product inh	ibits enzyme 1

Respiration

- 29. Name the three stages of respiration and state their location inside the cell.
 - Glycolysis in the cytoplasm
 - Citric Acid Cycle in the matrix of mitochondria
 - Electron Transport Chain in the Cristae of mitochondria
- **30.** State the stage of respiration that produces the most ATP
 - Electron transport chain
- 31. State the stage of respiration that produces carbon dioxide
 - Citric Acid Cycle
- 32. State the stage of respiration that produces water.
 - Electron Transport Chain
- 33. Draw a mitochondria and label the matrix and cristae (inner mitochondrial membrane).

- 34. Explain why some cells have more mitochondria than other cells and give an example of a cell with lots of mitochondria.
 - Cells require more ATP to be produced
 - Active cells such as sperm/muscle/brain cells have more mitochondria
- 35. Explain why cells such as muscles also have more folds in their many mitochondri than other cells such as skin which have less folds. (2 marks)

- More cristae in muscle cells = more ATP synthase in electron transport chain
- More ATP produced for muscle contraction
- 36. What name is given to the conversion of glucose to pyruvate via an intermediate.

Glycolysis

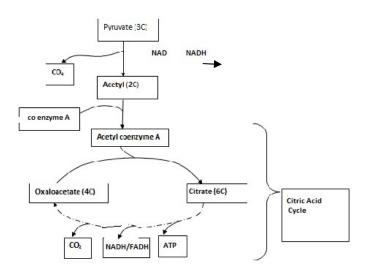
-

- 37. Explain what is meant by the energy investment stage of glycolysis
 - 2 ATP needed to phosphorylate the intermediate

38. Explain what is meant by the energy payoff stage

- 2 ATP in but 4 ATP produced OR net gain of 2 ATP
- 39. State what is produced during fermentation in muscle cells and yeast/plant cells.
 - Muscles produce lactic acid
 - Yeast/plant cells produce alcohol and CO₂
- 40. State which type of fermentation is reversible and irreversible in animals or plants/yeast.
 - Animals reversible fermentation
 - Plants/yeast irreversible fermentation
- 41. State the fate of yeast during fermentation.
 - Killed by alcohol

42. State the role of dehydrogenase

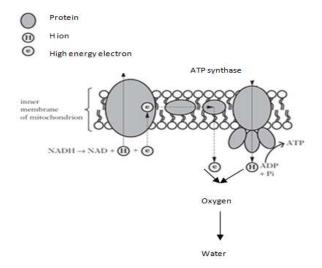

- Removes H ions and electrons and passes to NAD to make NADH.
- 43. State the role of co enzymes
 - Accepts H ions and electrons and pass to the electron transport chain.

44. Name two co enzymes and state which stage (s) of respiration they occur.

- NAD glycolysis and Citric Acid Cycle
- FAD Citric Acid Cycle
- 45. State the number of carbons on
 - (i) Glucose
 - 6C
 - (ii) Acetyl
 - 2C
 - (iii) Citric acid
 - 6C
 - (iv) Pyruvate
 - 3C

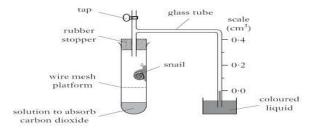
-

- 46. Name the substance required to proceed beyond pyruvate in the aerobic pathway.
 - oxygen
- 47. Draw the metabolic pathway from pyruvate into the Citric Acid Cycle.


48. State three products produced by the Citric Acid Cycle

- CO2
- ATP

-


- NADH/FADH
- 49. Name the molecule regenerated during the Citric Acid Cycle
 - Oxaloacetate
- 50. Define the electron transport chain
 - Collection of proteins in the inner mitochondrial membrane.
- 51. State the molecule that allows H to be pumped across the membrane.
 - Electrons
- 52. State the role of oxygen in the electron transport chain
- Final H and electron acceptor (that produces water).
- 53. Explain the role of H in the synthesis of ATP (2 marks)
 - Flows across ATP synthase
 - This causes ATP synthase to rotate making ATP from ADP & Pi

54. Draw a labelled diagram of the electron transport chain

55. State two alternative respiratory substrates

- Proteins/amino acids/ fatty acids/ fat/glycogen/starch
- 56. State the stages that proteins, fats and carbohydrates feed into.
 - Proteins & fats Glycolysis and Citric Acid Cycle
 - Carbohydrates (starch/glycogen) Glycolysis
- 57. Draw a labelled diagram of a respirometer

- 58. An investigation was carried out to determine the effect of the number of worms on the rate of respiration. Identify the independent and dependent variable.
 - Independent variable number of worms
 - Dependent variable rate of respiration
- 59. Explain how the reliability of the results could be improved in the experiment above.
 - Repeat experiment with another group of worms
- 60. State why the respirometer was left for 10 minutes before measuring the results.
 - To ensure worms adjust to temperature
- 61. Describe how temperature can be controlled in the experiment
 - Use of a water bath
- 62. State the control of the respirometer experiment described in Q55.
 - Exact same set up but without worms
- 63. Explain why a control is necessary
 - To prove the worm is causing the liquid to move up tube.
- 64. Explain how liquid is drawn up the tube in the respirometer (2 marks)
 - Oxygen taken in and carbon dioxide absorbed by chemical.
 - Less volume of air in tube causes more air/dye to be forced up tube.

Metabolism & Circulatory systems

65. Name two ways of measuring metabolic rate.

- Oxygen produced per minute
- Carbon dioxide taken in per minute
- Change in temperature per minute

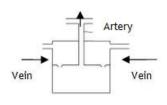
66. Rank the following animals from highest to lowest metabolic rate: fish, bird, amphibian/reptile,

mammals.

Highest metabolic rate

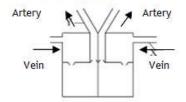
- Bird
- Mammal
- Amphibian/reptile
- Fish


Lowest metabolic rate


67. State the type of circulatory system for birds, amphibians, fish, mammals, reptiles.

- Bird & mammal double complete circulatory system
- Amphibian/reptile double incomplete circulatory system
 - Fish single circulatory system

68. State the number of atria and ventricles in a double complete, single and double incomplete circulatory system.


- Double complete 2 atria and 2 ventricles
- Double incomplete 2 atria and 1 ventricle
- Single 1 atrium and 1 ventricle
- 69. Draw a diagram of a double complete, incomplete and single circulatory system and label arteries and veins as well as the direction of blood flow in arteries and veins.

Double Incomplete

Double Complete

70. Explain why double complete circulatory systems are more efficient than double incomplete circulatory systems (2 marks).

- Double complete prevent mixing of oxygenated and deoxygenated blood
- Increased oxygen delivered to tissues for respiration

71. State two features of the lungs that makes birds respiratory system more efficient than mammals and reptiles.

- 1 way circulatory system
- Parabronchi

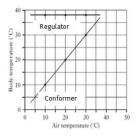
72. Explain why parabronchi are advantageous over mammalian alveoli.

Alveoli are dead end but parabronchi allow continuous gas exchange.

73. Describe the respiratory system of amphibians.

- Very simplistic with just a trachea and 2 air sacs for gas exchange during exercise.

Low Oxygen Niche, VO2 max & Terrestrial Body Size


- 74. Describe the relationship between oxygen concentration and terrestrial body size.
 - As oxygen concentration has increased so too has terrestrial body size.
- 75. Explain why oxygen concentration limits the size of terrestrial animals on earth.
 - Limits rate of metabolism so animals are limited in size due to only 20% oxygen in air.
- 76. State two examples of low oxygen niches.
 - High altitude

-

- Deep ocean
- 77. State an adaptation of deep diving mammals and of being at high altitude.
 - Deep diving mammals lower heart rate/ partially deflate lungs so oxygen demand is less.
 - High altitude produce more red blood cells per ml of blood.
- 78. Explain what VO_2 max is a measure of
 - Cardiovascular fitness
- 79. Explain how VO₂ max indicates fitness
 - The higher the oxygen consumed the fitter the individual
- 80. If individual A produces 40ml of oxygen in 10 minutes and weighs 55kg and individual B produces 45ml of oxygen and weighs 60kg which individual is fitter. Work this out per minute per kg.
 - A 40ml divided by 10 minutes divided by 55kg = 0.073 ml/min/kg
 - B 45ml divided by 10 minutes divided by 60kg = 0.075ml/min/kg
 - Individual B is fitter
- 81. Explain why it is necessary to measure VO2 max per kg
 - As individuals weights are different the per kg calculation allows a valid (fair) comparison of their relative fitness.

Regulators, Conformers & Extremophiles

82. Draw a graph of internal versus external temperature for regulators and conformers.

83. Define a regulator.

- Internal environment remains constant despite changes to external environment

84. Define a conformer.

Internal environment changes with external environment

85. State two abiotic factors that regulators can control.

- Salinity
- Temperature
- pH
- 86. State whether regulators or conformers have a high or low metabolic rate.
 - Regulators high metabolic costs
 - Conformers low metabolic costs

87. Explain why regulators have high metabolic costs.

- Regulate metabolism by homeostasis which costs energy
- 88. State whether regulators or conformers have a wide or narrow niche.
 - Regulators wider niche
 - Conformers narrower niche
- 89. State whether regulators or conformers do homeostasis
 - Regulators = homeostasis
 - Conformers = no homeostasis

90. State what type of organisms undergo behavioural adaptations to control their metabolism

Conformers (as they cannot undertake homeostasis)

91. Explain why mammals thermoregulate (2 marks).

- To keep enzymes at their optimum
- To maintain high diffusion rates
- 92. Name the temperature monitoring centre in mammals.
 - Hypothalamus
- 93. Name the effector where corrective responses occur during thermoregulation.
- Skin

94. State how information is communicated between the temperature monitoring centre and effector.

Nerve (impulses)

95. Name 4 corrective responses to being too hot in regulators

- Vasodilate blood vessels
- Hair erector muscles relax
- Sweating increases
- Lower metabolic rate

96. Name 4 corrective responses to being too cold in regulators

- Vasoconstrict blood vessels
- Hair erector muscles contract
- Shivering increases
- Higher metabolic rate

97. Explain the process of vasodilation.

- Increased blood flow
- Increased heat loss by radiation

98. Explain why hair erector muscles contract.

- Hairs stand up
- Air trapped by insulation
- 99. Explain why animals sweat.
 - Increases evaporation of water to cool body.

100.Explain why animals shiver.

- Increased muscle contraction to generate heat

101. Explain why metabolism increases during winter.

Increased heat generated.

102. Define an extremophile.

-

- An organism that can live in an environment that others cannot survive.

103. Give an example of where thermophilic bacteria live.

- Hot springs/sea bed vents/volcanoes

104. Explain why thermophilic bacteria survive high temperatures.

- The bacteria's enzymes e do not denature at high temperatures
 - (e.g taq polymerase which is used in PCR)

105. Another type of extremophile lives in sea bed vents and is not a thermophile but instead is able to generate ATP from which other type of molecule.

- Inorganic molecules (hydrogen sulphide)

Surviving and Avoiding adverse conditions

106.State the technique that survives adverse conditions.

- Dormancy
- 107.State the technique that avoids adverse conditions.
 - Migration
- 108.Define dormancy.

-

Lowered metabolic rate

109. State one observable physiological measure of lowered metabolic rate.

- Lower heart rate
- Lower breathing rate
- Lower body temperature

110. Animals undergo dormancy when environmental conditions vary beyond

- Tolerable limits

111.Name one problem with environmental conditions going beyond that which can be tolerated by animals.

- Cannot sustain high metabolic rate
- 112. Define predictive or consequential dormancy.
 - Predictive dormancy when metabolic rate is reduced BEFORE onset of adverse conditions
 - Consequential dormancy when metabolic rate is reduced AFTER onset of adverse conditions

113. Which type of dormancy occurs during unpredictable conditions?

Consequential as can occur at any time

114.State the 3 types of dormancy.

- Aestivation Hibernation (daily) torpor
- 115. Which type of dormancy occurs in hummingbirds?

Daily torpor

- 116. Which type of dormancy occurs in crocodiles after the onset of adverse conditions.
 - Consequential aestivation
- 117. Which type of dormancy occurs in bears before the onset of winter.
 - Predictive hibernation

118.Define hibernation

Reduced metabolic rate in low temperatures/winter

119. Define aestivation

-

Reduced metabolic rate during drought/very high temperatures

120. Define daily torpor

- Reduced metabolic rate in animals with high metabolic rates

121.State an advantage of undergoing dormancy

Saves energy

122. Define migration

Avoiding metabolic adversity by relocation

123.Name the two components to migration.

- Innate
- learned

124.State a vertebrate example of migration

- Salmon move from fresh water to sea water.
- Birds move from UK to Europe in winter

125. Describe an invertebrate example of migration

- Monarch Butterfly moves from Canada to Mexico in Winter

126.State a disadvantage of migration

- Costs energy to migrate

127.State one way of tracking migration.

- Electronic tags/mark and recapture/GP

Microbe growth & Fermenters

128.State two different substances needed for microbe growth.

- Energy source
- Raw material

129. Give an example of an energy source.

- Light (photosynthetic bacteria)
- carbohydrates

130. Give an example of a simple and complex raw material.

- Simple raw material = amino acid
- Complex raw material = beef extract/fatty acids/vitamins

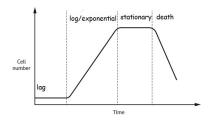
131. What process do microbes need simple raw materials for.

- Protein synthesis
- 132. State the 4 environmental conditions that need to be controlled inside a fermenter.
 - Sterility/temperature/oxygen/pH

133. Explain why sterile conditions are required.

- To prevent contamination by other microbes that can cause disease/use up raw materials
- 134. Describe how sterile conditions are achieved in the fermenter.
 - Air filter/boiling water to kill other microbes

135.Explain why temperature and pH require to be controlled.


- To keep microbe enzymes at their optimum
- 136.State 2 ways temperature is controlled in a fermenter.
 - Water jacket
 - thermostat
- 137.Describe how pH is controlled in a fermenter.
 - Use of buffers

138. Explain why oxygen concentration requires to be controlled in a fermenter.

For aerobic respiration

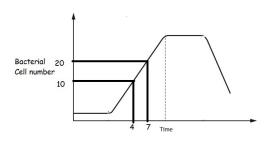
139.Describe 2 ways oxygen concentration is maintained in the fermenter.

- Air inlet
- Use of paddles for aeration
- 140.State two other molecules that need to be added to a fermenter when the desired product is not the end product in the metabolic pathway.
 - Inducers/inhibitors/precursors
- 141.Draw a graph of the four stages of microbe growth.

142. Explain what happens during the lag phase.

- Takes time for enzymes to be induced/produced

143. Why are enzymes being induced?


- Needed for primary metabolism to allow cell numbers to increase

144. Explain how to calculate mean generation/doubling time via a graph diagram.

- Using the exponential/log phase find a time period on the Y axis and read off the time on the X axis.
- Then double the bacteria cell number on the Y axis and read off the time on the X axis.
- The difference in time taken to double the bacterial number is the mean generation/doubling time

Worked Example

- In the example below the intial bacterial number is 10 and this was at 4 hours.
- The bacterial number at 20 (double 10) was 7 hours.
- Therefore the mean generation time would be 7-4 = <u>3 hours</u>

145.Define the exponential/log phase of microbe growth

- Rapid bacterial growth due to cell count doubling with each round of mitosis **146.Explain why a logarithmic scale is required when plotting microbe growth graphs**
 - As microbe growth is exponential/too rapid to be plotted on normal scale
- 147.State what phase the birth rate equals the death rate
 - Stationary phase

148.Explain why there is a stationary phase of microbe growth

- Lack of nutrients in culture medium
- Toxic metabolites start to be produced
- 149.Explain why a death phase occurs
 - Toxic metabolites accumulate

150.State the stages of microbe growth that are involved in primary metabolism

- Lag and log/exponential
- 151. Explain what happens during primary growth
 - Microbes prepare to and actually increase in cell number

152. State the stages of microbe growth that are involved in secondary metabolism

- Only stationary phase

153.Name a secondary metabolite

- antibiotics

154. Explain why secondary metabolites are produced by bacteria.

To outcompete other bacteria (to gain an ecological advantage) when competition is fierce.

Altering Wild Microbes

155.State two ways of altering wild microbes.

Mutagenesis/selective breeding/recombinant DNA technology

156. If wild bacteria are exposed to UV radiation this is an example of?

Mutagenesis

157. Explain how you selectively breed bacteria

Plasmid chosen and passed from 1 bacteria to another in SAME generation/horizontal gene transfer

158.Explain how you selectively breed yeast

- Specific Yeast selected and reproduce sexually via gametes

159. Define recombinant DNA technology.

Animal/plant genes inserted into microbe to produce animal/plant protein.

160. Which type of vector bacteria or yeast can produce inactive forms of protein.

- Bacteria

-

161.Explain your choice.

- Bacteria cannot fold protein correctly/cannot undergo post translational modifications

162.State why in some proteins bacterial vectors are used.

- Bacteria multiply faster/very rapidly compared to yeast

163. What are the two roles of endonuclease.

- Cut plasmids open
 - Cut gene out of chromosome

164.State why the same endonuclease is used for both processes.

To create matching/complementary sticky ends

165.State the role of ligase in recombinant DNA technology.

- Seals gene into plasmid

166.Name the 6 genes found on a vector.

- ORI sequence/regulatory sequence/safety genes/antibiotic resistance genes/genes to increase yield/restriction site
- 167.Name the genes responsible for self replication/future copying of plasmids
 - ORI sequence/Origin of Replication

168.Name the genes where endonuclease cuts on plasmid

Restriction site

169.Name the genes which turn certain genes ON or OFF (control gene expression)

- Regulatory sequence

170. Explain how genes work that increase yield of product.

Amplify certain steps in a metabolic pathway/inhibit other steps in metabolic pathway

171. Explain how antibiotic resistance genes work. (2 marks)

- Expose all GM bacteria to antibiotic
- Only those bacteria that have taken up plasmid successful (transformed bacteria) will be resistant to antibiotic and survive.

172. Explain why antibiotic resistance genes are necessary.

- Plasmids being inserted into bacteria is not very successful. This process is called transforming bacteria.

173.Name an ethical consideration when working with GM micro organisms.

 GM bacterias will pass on antibiotic resistance to wild microbes in external environment by escaping lab

174.Describe how scientists prevent this ethical issue with GM microbes.

- GM bacteria have genes that prevent survival in external environments