N5 Chemistry Unit 1: Chemical Changes & Structure Homework 1.15

Which of the following compounds is a base?	6.	The gra is 106 g
A Magnesium chlorideB Calcium carbonateC Sodium bromide		How m sodium
D Iron(II) sulfate		A C B C
Answer		C 2
Which of the following combinations of solutions would react to produce a precipitate?		D 2 Answe
(You may wish to refer to the data booklet.)	7.	Which
 A Copper(II) chloride & sodium bromide B Iron(II) bromide & sodium carbonate C Gibern ritrate & retession sulfate 		added a preci
C Silver nitrate & potassium sulfateD Sodium bromide & zinc chloride		A C B L
Answer		C N
In a reaction, 40 cm ³ of gas were collected in		D S
20 s. The average rate at which gas was given off, in cm ³ s ⁻¹ , was		Answe
A 20	8.	0·5 mo water a
B 1·0 C 2·0		What w
D 0.5		A C
Answer		B C
What is the relative formula mass of ammonium sulfate, $(NH_4)_2SO_4$?		C 1 D 2
A 70		Answe
B 118 C 132	9.	2K ⁺ (ac
D 228		
Answer		Pb
Hydrogen gas will		The equati
A relight a glowing splint		A a
B turn lime water cloudyC burn with a pop		B r
D turn damp pH paper red.		C p
		Dr

- am formula mass of sodium carbonate g. nany moles are present in 5.3 g of n carbonate?
 -)∙05
 -).5
 - 20

r ____

- of the following solutions, when to copper chloride solution, produces ipitate?
 - Calcium bromide solution
 - ithium sulfate solution
 - Magnesium nitrate solution
 - Sodium hydroxide solution

er _____

- ol of pure citric acid was dissolved in and the solution made up to 250 cm³. was the concentration of the solution?
 -)·25 mol l⁻¹)∙5 mol l⁻¹
 - $1.0 \text{ mol } 1^{-1}$
 - $2.0 \text{ mol } \text{I}^{-1}$

er _____

 $(q) + 2I^{-}(aq) + Pb^{2+}(aq) + 2NO_{3}^{-}(aq)$ Ļ

 $D^{2+}(I^{-})_{2}(s) + 2K^{+}(aq) + 2NO_{3}(aq)$

type of reaction represented by the ion above is

- addition
- neutralisation
- precipitation
- redox.

Answer

Answer

1.

2.

3.

4.

5.

- 10. Give the number of moles in each of the following solutions:
 - a) 200 cm³ of 1 mol I^{-1} sulfuric acid

	b) 50 cm ³ of 0.5 mol I^{-1} sodium hydroxide solution							_ moles	2		
	c)	40 cm ³ of	a 2 mol l ⁻¹ d	copper(II)	sulfate sol	utio	n			_ moles	2
	d)	5 cm ³ of a	a 0·1 mol l⁻¹	solution c	of nitric acio	d.				_ moles	2
	e)	25 cm ³ of	a 4 mol l ⁻¹ s	olution of	hydrochlo	ric a	acid.			_ moles	2
11.	Bala a)	nce the foll Na	owing chem +	iical equat O2	tions.		Na ₂ O			_moles	2
	b)	N ₂	+	H ₂			NH ₃				
	c)	NO ₂	+	H ₂ O			HNO ₃	+	NO		
	d)	SiCl ₄	+	H ₂ O			HCI	+	SiO ₂		4

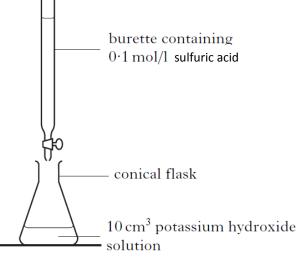
12. Write the chemical formula for each of the following substances.

	a)	Calcium oxide	b)	Barium carbonate	
	c)	Sulfur trioxide	d)	Iron(III) chloride	
	e)	Lithium sulfate	f)	Carbon tetrafluoride	6
13. For each of the following molecules draw a diagram to show the shape of the molecules				n to show the shape of the molecules.	
	a)	CCl ₄	b)	PH ₃	
	c)	SH ₂	d)	NF ₃	4

- 14. Silicon forms compounds with chlorine and oxygen.
 - a) Draw a diagram using outer electrons only to show the bonds in the compound formed between silicon and chlorine, SiCl₄.

b) i) Draw a diagram to show the **shape** of the SiCl₄ molecule.

	ii)	What name is given to this shape of molecule?	1
c)	Silic	con oxide has a melting point of 1713°C.	
	Wha	at type of covalent structure must this compound have?	1


1

1

- 15. Metal salts can be produced by different methods.
 - Lead(II) iodide can be produced by reacting lead(II) nitrate solution with sodium iodide solution.
 The equation for this reaction is:

 $Pb(NO_3)_2(aq) + NaI(aq) \longrightarrow PbI_2(s) + NaNO_3(aq)$

- i) Balance this equation.
- ii) What technique could be used to remove lead(II) iodide from the mixture?
- b) Potassium sulfate can be produced by titrating potassium hydroxide solution with dilute sulfuric acid.

The equation for the reaction between sulfuric acid and potassium hydroxide is:

$$H_2SO_4 + 2KOH \longrightarrow K_2SO_4 + 2H_2O$$

i) What must be added to the conical flask to show the end-point of the titration?

The average volume of sulfuric acid used in the titration is 20 cm³.
 Calculate the concentration of the potassium hydroxide.
 Show your working clearly.

3

1

1

1