N5 Chemistry
 Unit 1: Chemical Changes \& Structure Homework 1.15

1. Which of the following compounds is a base?

A Magnesium chloride
B Calcium carbonate
C Sodium bromide
D Iron(II) sulfate
Answer \qquad
2. Which of the following combinations of solutions would react to produce a precipitate?
(You may wish to refer to the data booklet.)
A Copper(II) chloride \& sodium bromide
B Iron(II) bromide \& sodium carbonate
C Silver nitrate \& potassium sulfate
D Sodium bromide \& zinc chloride
Answer \qquad
3. In a reaction, $40 \mathrm{~cm}^{3}$ of gas were collected in 20 s . The average rate at which gas was given off, in $\mathrm{cm}^{3} \mathrm{~s}^{-1}$, was

A 20
B 1.0
C $\quad 2.0$
D $\quad 0.5$
Answer \qquad
4. What is the relative formula mass of ammonium sulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$?

A 70
B 118
C 132
D 228
Answer \qquad
5. Hydrogen gas will

A relight a glowing splint
B turn lime water cloudy
C burn with a pop
D turn damp pH paper red.
Answer \qquad
6. The gram formula mass of sodium carbonate is 106 g .
How many moles are present in $5 \cdot 3 \mathrm{~g}$ of sodium carbonate?

A 0.05
B 0.5
C 2
D 20

Answer \qquad
7. Which of the following solutions, when added to copper chloride solution, produces a precipitate?

A Calcium bromide solution
B Lithium sulfate solution
C Magnesium nitrate solution
D Sodium hydroxide solution

Answer \qquad
8. 0.5 mol of pure citric acid was dissolved in water and the solution made up to $250 \mathrm{~cm}^{3}$. What was the concentration of the solution?

A $\quad 0.25 \mathrm{~mol} \mathrm{l}^{-1}$
B $\quad 0.5 \mathrm{moll}^{-1}$
C $\quad 1.0 \mathrm{moll}^{-1}$
D $\quad 2.0 \mathrm{moll}^{-1}$

Answer \qquad
9. $2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})+\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})$
\downarrow
$\mathrm{Pb}^{2+}\left(\mathrm{I}^{-}\right)_{2}(\mathrm{~s})+2 \mathrm{~K}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq})$
The type of reaction represented by the equation above is

A addition
B neutralisation
C precipitation
D redox.
Answer \qquad
10. Give the number of moles in each of the following solutions:
a) $200 \mathrm{~cm}^{3}$ of $1 \mathrm{moll}^{-1}$ sulfuric acid
b) $50 \mathrm{~cm}^{3}$ of $0.5 \mathrm{moll}^{-1}$ sodium hydroxide solution
\qquad moles
\qquad moles
c) $\quad 40 \mathrm{~cm}^{3}$ of a $2 \mathrm{moll}^{-1}$ copper(II) sulfate solution
\qquad moles
d) $5 \mathrm{~cm}^{3}$ of a $0.1 \mathrm{moll}^{-1}$ solution of nitric acid.
e) $\quad 25 \mathrm{~cm}^{3}$ of a $4 \mathrm{moll}^{-1}$ solution of hydrochloric acid.
\qquad moles
\qquad moles
11. Balance the following chemical equations.
a) Na
$+$
O_{2}
$\mathrm{Na}_{2} \mathrm{O}$
b) N_{2}
$+$
$\mathrm{H}_{2} \longrightarrow \mathrm{NH}_{3}$
c) $\quad \mathrm{NO}_{2}$
$+$
$\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HNO}_{3}$
$+$ NO
d) SiCl_{4}
$+$
$\mathrm{H}_{2} \mathrm{O} \longrightarrow$
$\mathrm{HCl}+$
SiO_{2}
12. Write the chemical formula for each of the following substances.
a) Calcium oxide
b) Barium carbonate
c) Sulfur trioxide
d) Iron(III) chloride
e) Lithium sulfate \qquad f) Carbon tetrafluoride \qquad
13. For each of the following molecules draw a diagram to show the shape of the molecules.
a) CCl_{4}
b) PH_{3}
c) SH_{2}
d) NF_{3}
14. Silicon forms compounds with chlorine and oxygen.
a) Draw a diagram using outer electrons only to show the bonds in the compound formed between silicon and chlorine, SiCl_{4}.
b) i) Draw a diagram to show the shape of the SiCl_{4} molecule.
ii) What name is given to this shape of molecule?
c) Silicon oxide has a melting point of $1713^{\circ} \mathrm{C}$.

What type of covalent structure must this compound have?
15. Metal salts can be produced by different methods.
a) Lead(II) iodide can be produced by reacting lead(II) nitrate solution with sodium iodide solution. The equation for this reaction is:

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{NaI}(\mathrm{aq}) \longrightarrow \mathrm{PbI}_{2}(\mathrm{~s})+\mathrm{NaNO}_{3}(\mathrm{aq})
$$

i) Balance this equation.
ii) What technique could be used to remove lead(II) iodide from the mixture?
b) Potassium sulfate can be produced by titrating potassium hydroxide solution with dilute sulfuric acid.

The equation for the reaction between sulfuric acid and potassium hydroxide is:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{KOH} \longrightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

i) What must be added to the conical flask to show the end-point of the titration?
ii) The average volume of sulfuric acid used in the titration is $20 \mathrm{~cm}^{3}$. Calculate the concentration of the potassium hydroxide.
Show your working clearly.

