N5 Chemistry Unit 2: Nature's Chemistry Homework 2.8

1. Molecules in which four different atoms are attached to a carbon atom are said to be chiral.

Which of the following molecules is chiral?

Answer _____

- 2. A reaction is endothermic if
 - A energy is required to start the reaction
 - B heat is released during the reaction
 - C the temperature drops during the reaction
 - D the temperature rises during the reaction.

Answer _____

3. Propene reacts with hydrogen bromide to form two products.

Which of the following alkenes does **not** form two products on reaction with hydrogen bromide? A But-1-ene

- B But-2-ene
- C Pent-1-ene
- D Pent-2-ene

Answer _____

4. Petrol is a mixture of hydrocarbons.

The tendency of a hydrocarbon to ignite spontaneously is measured by its octane number.

	Hydrocarbon	Octane number	
1	3-methylpentane	74.5	
2	butane	93.6	
3	pentane	61.7	
4	2-methylpentane	73.4	
5	hexane	24.8	
6	methylcyclopentane	91.3	

A student made the hypothesis that as the chain length of a hydrocarbon increases, the octane number decreases.

Which set of three hydrocarbons should have their octane numbers compared in order to test this hypothesis?

A 1, 4, 6 B 1, 2, 4 C 2, 3, 5 D 3, 4, 5

Answer _____

5. The lowest temperature at which a hydrocarbon ignites is called its flash point.

Hydrocarbon	Flash point (°C)	
hexane	-23	
heptane	-4	
octane	13	
nonane	31	

- a) i) Using the information in the table, make a general statement linking the flash point to the number of carbon atoms.
 - ii) Predict the flash point, in $^{\circ}C$, of decane, $C_{10}H_{22}$.
- b) Nonane burns to produce carbon dioxide and water.

C9H20 + 14O2 → 9CO2 + 10H2O

Calculate the mass, in grams, of carbon dioxide produced when 25 g of nonane is burned. Show your working clearly.

6. Succinic acid is a natural antibiotic. The structure of succinic acid is shown.

Name the functional group present in succinic acid.

3

1

1

7. A student calculated the energy absorbed by water when ethanol is burned using two different methods.

The student recorded the following data.

	Method	
	Α	В
Mass of ethanol burned (g)	0.2	0.2
Mass of water heated (g)	100	100
Initial temperature of water (°C)	24	24
Final temperature of water (°C)	32	58

a) The final temperature of water in method B is higher than in method A.Suggest why there is a difference in the energy absorbed by the water.

1

b) Calculate the energy, in kJ, absorbed by the water in method B.
You may wish to use the data booklet to help you.
Show your working clearly.

8. Vitamin C is found in fruits and vegetables.

Using iodine solution, a student carried out titrations to determine the concentration of vitamin C in orange juice.

The results of the titration are given in the table.

Titration	Initial burette reading (cm ³)	Final burette reading (cm ³)	<i>Titre</i> (cm ³)
1	1.2	18.0	16.8
2	18.0	33.9	15.9
3	0.5	16.6	16.1

- a) Calculate the average volume, in cm³, that should be used in calculating the concentration of vitamin C.
- b) The equation for the reaction is

 $C_6H_8O_6(aq)$ + $I_2(aq)$ \longrightarrow $C_6H_6O_6(aq)$ + 2HI(aq) vitamin C

Calculate the concentration, in mol l^{-1} , of vitamin C in the orange juice.

Show your working clearly.

1