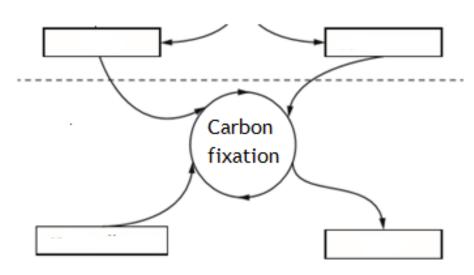
St Ninian's High School Biology Department

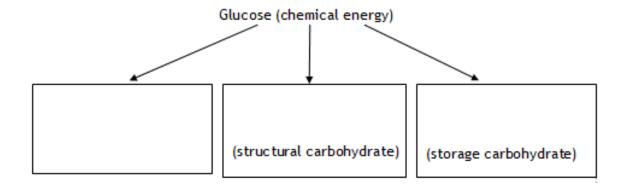
National 5 Biology Life on Earth Booklet

Name

	Photosynthesis
	Word Equation Photosynthesis is a two-stage process:
	+ + +
	raw materials products
1.	2
	Stage 1: Light Reaction
	energy from the sun is trapped by in
	theof green plants for the production of:
1.	Production of
	The light energy from the sun is converted into energy
	which is used to generate
2.	Production of
	Light energy is also used towater into and
	in a process called
	
_	diffuses from the cell and is termed a
	+

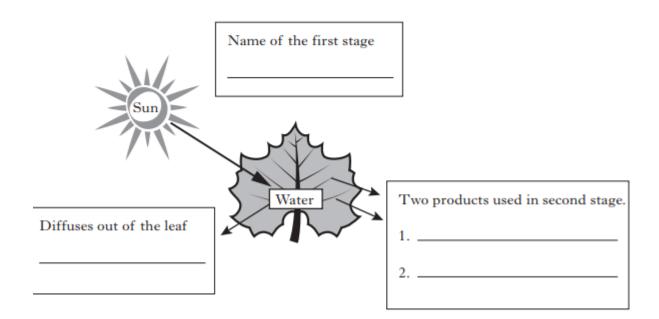

Photosynthesis

Stage 2: Carbon fixation


A series of ______controlled reactions which converts _____
into _____ using ____ and ____ produced in the
_____reactions.

Carbon Fixation Diagram

From light reactions


Fates of Sugar

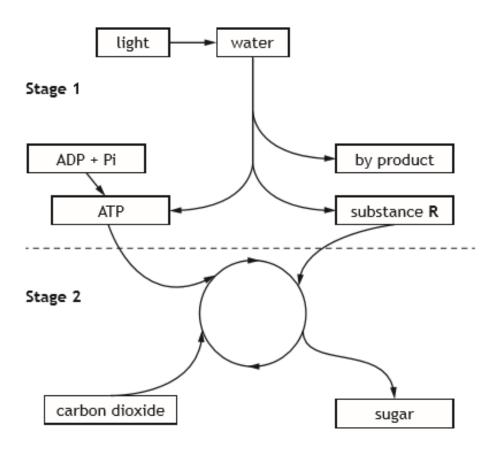
Overall Photosynthesis Diagram

- 1. Photosynthesis is a two stage process used by green plants to produce food.
- a) The diagram below represents a summary of the first stage of photosynthesis. Complete the diagram by filling in the three boxes.

ATP carbon dioxide carbon fixation glucose hydrogen oxygen photolysis

3

3


b) Describe the second stage of photosynthesis.

1 — Light reactions 2 — Carbon fixation ble below shows some state ete the table to show whi g a tick (/) in the Stage 1 or rst two statements have bee Statement	ich stage e r Stage 2 bo	each statem ox.) by
ble below shows some state ete the table to show whig a tick (🗸) in the Stage 1 or rst two statements have bee	ich stage e r Stage 2 bo en complete	each statem ox.) by
ete the table to show whi g a tick (🗸) in the Stage 1 or rst two statements have bee	ich stage e r Stage 2 bo en complete	each statem ox.		by
g a tick (✔) in the Stage 1 or rst two statements have bee	Stage 2 bo	OX.	nent refers to	by
		ed for you.		
Statement	Stage 1			
		Stage 2]	
on dioxide required		1	1	
energy required	✓		1	
r required]	
produced]	
Hydrogen required				
en produced]	
		r produced Hydrogen required en produced	r produced Hydrogen required en produced n why high temperatures (above 50°C) wou	r produced Hydrogen required en produced n why high temperatures (above 50°C) would prevent

Energy Conversion Diagram

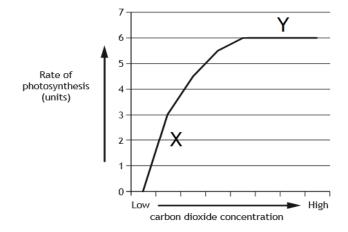
The	energy from the _		is trapped by	/
	in chloroplasts	and turned int	0	
energy in the fo	rm of	during the _		reaction.
Energy conversio	on 2			
The	energy fou	ınd in ATP is th	en used to pr	oduce a store
	ener			
	Energy Conversion			•
_		energy from th	e	
-		energy in fo	rm of	_
		Light reaction (trapped by	on chlorophyll)	
-	• • • • • • • • • • • • • • • • • • •	energy in for	m of	
		Carbon fixat	ion	
		on	ergy	

Photosynthesis is the process by which plants produce sugar using light.
 The flow diagram represents stages of photosynthesis in a leaf.

- (i) Identify substance **R**.
- (ii) Describe the transfer of energy from light arriving at the leaf to the formation of sugar.

1

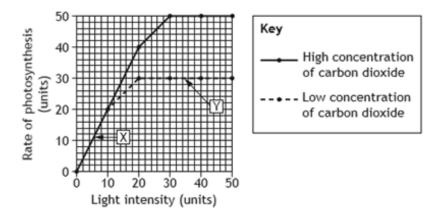
3


Limiting Factors on Photosynthesis

Three Limiting factors

A factor which if increased can ______ the rate of photosynthesis.

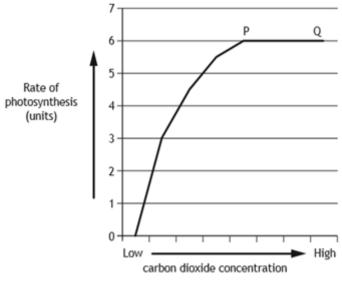
- 1. _____
- 2. _____
- 3. _____


Limiting Factor graphs

Point X _____

Point Y _____

1. The graph shows the effect of light intensity and carbon dioxide concentration on the rate of photosynthesis.


Identify the limiting factor at each of the points X and Y.

X			
Y			

1

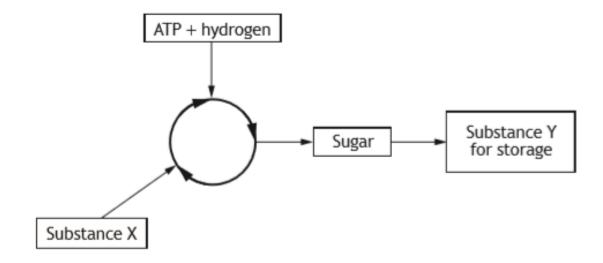
1

2. The graph below shows how the rate of photosynthesis is affected by the concentration of carbon dioxide.

Sate two environmental factors which could limit the rate of photosynthesis between points P and Q.

1. ______

2. _____


Limiting Factor Plant Experiment

 State one factor, other than temperature, which can limit the rate of photosynthesis.

1

3

The diagram represents the second stage of photosynthesis.

Name substances X and Y. 2

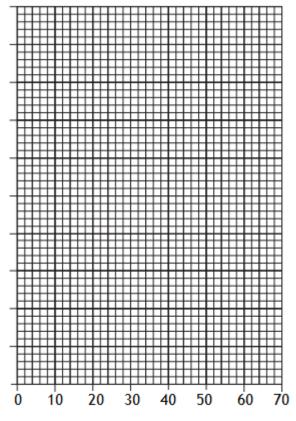
X_____

Υ_____

b) Describe the first stage of photosynthesis.

The rate of photosynthesis can be measured by usin	ng a	_weed (elodea) by
measuring the number ofbubbles per minu	te.	
Experimental Set up		
The beaker contains and sodium	m hydrogen carb	onate which
provides the plant with		
A is used to provide but a		shield is used
to control the		
<u>Labelled Diagram</u>		
Water/sodium hydrogen carbonate pond weed	O ₂ bubbles	lamp heat shield

1. An experiment was set up to investigate the effect of light intensity on the rate of photosynthesis in elodea as shown in the diagram below.


The number of bubbles produced in one minute was measured and the light intensity was altered by moving the lamp further from the beaker to lower the light intensity.

Temperature was controlled by placing the beaker of water in a water bath.

Distance of lamp from beaker (cm)	Number of bubbles produced in one minute
10	80
20	80
30	65
40	40
50	20
60	5

a)	State the aim of the investigation			
b)	State the following variables based on the information above.			
	Independent variable			
	Dependent variable			

c) On the grid below, complete the vertical axis and plot a line graph to show the effect of the distance of lamp from beaker on the number of bubbles produced per minute.

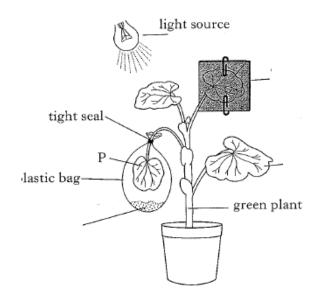
Distance of lamp from beaker (cm)

(i) Predict the number of oxygen bubbles produced in one minute at 70cm from the beaker

_____ bubbles per minute

(i) Describe the conclusion that can be drawn from the results of the experiment in terms of the effect of light intensity on the rate of photosynthesis.

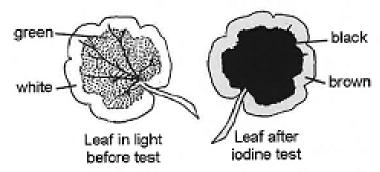
d)	State two variables that have to be kept constant for VALID results apart from controlling the temperature.
	1
	2
e)	State how temperature was controlled in this experiment from the information in the passage.
f)	A control was not carried out in this experiment but is also important for VALID results.
(i)	Describe how to set up a control in this experiment.
(ii)	Explain why a control is necessary for VALID results.
g)	The student only took one reading at each distance from the lamp. Explain how to improve the reliability of the results.


Starch Test: Limiting factors

Plants can be checked to see if they are photosynthesisi	ng in the presence/
absence of the 3 limiting factors by performing a	test.
Leaves are boiled to remove	and then
is added to test for starch.	
If starch is present the leaf will turn	

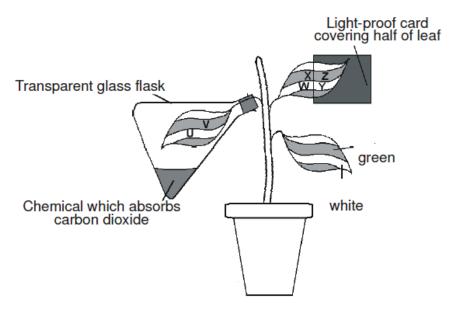
Limiting Factor Experiment

- 1. Black paper is used to remove the limiting factor of _____
- 2. Plastic bag with chemical to remove the limiting factor of _____
- 3. Variegated leaves contain _____ and _____ parts.


 The white parts remove ______.

Limiting Factor Plant Experiment

In a variegated leaf the white areas lack photosynthetic pigments.

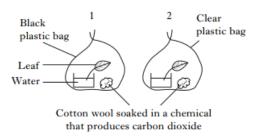

The diagram shows the appearance of a variegated leaf before and after having been boiled in water, boiled in alcohol to remove any pigment and then bathed in iodine solution.

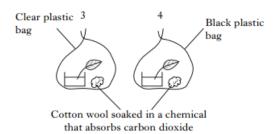
The result of the iodine test shows the presence in the leaf of

- chlorophyll A
- cellulose В
- C. sugar
- starch.

The diagram below shows an investigation into photosynthesis using a plant with 2. variegated (green and white) leaves.

In which areas of the leaves would photosynthesis take place?


- X only V and X
- A B C D W and X U, Y and Z


Photosynthesis Mindmap

1. The light energy for photosynthesis is captured by

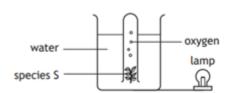
A water B hydrogen C chlorophyll D oxygen.

2. The diagrams below show four experiments used to investigate the conditions needed for photosynthesis.

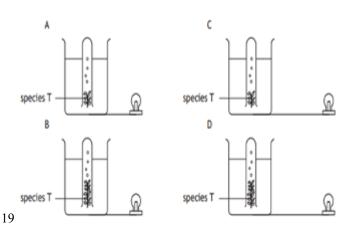
After two days, the four leaves were tested for the presence of starch. The results from which two experiments should be compared to show that carbon dioxide is needed for photosynthesis?

- 1 and 2 B 2 and 4 2 and 3 3 and 4
- 3. The role of chlorophyll in photosynthesis is to trap
- light energy for ATP production
- A B chemical energy for ATP production
- Č light energy for ADP production chemical energy for ADP production

The table below shows the rate of 4. photosynthesis in a plant, at 10 °C and 15 °C, in different light intensities.


Light Intensity (units)	Rate of Photosynthesis		
	10°C	15 °C	
2	4	5	
4	10	15	
6	15	30	
8	22	45	

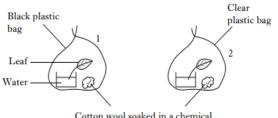
At which light intensity was the rate of photosynthesis at 15 °C found to be 50% greater than the rate at 10 °C?


2 units В 4 units Č 6 units Ď

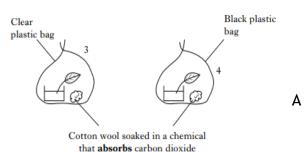
8 units

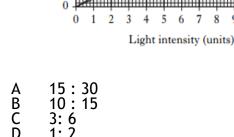
5. An investigation was carried out to compare the rate of oxygen gas production by two different species o water plant S and T.

Which diagram below shows the set-up for species T that would allow a valid comparison in the rate of oxygen production of the two species?



- 6. The diagrams below show four experiments used in an investigation into the conditions needed for photosynthesis. The results from which two experiments should be compared to show that light is needed for photosynthesis?
- 9. The graph below shows the rate of photosynthesis, as light intensity increases, at two different temperatures. At a light intensity of 6 units, what is the simplest whole number ratio of the rate of photosynthesis at 10°C compared to 15°C?


15° C


10° C

10 11 12

Cotton wool soaked in a chemical that produces carbon dioxide

50

45

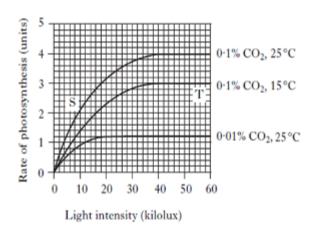
40

30 25

20 15

10 5

Rate of photosynthesis (Bubbles per minute)


- 7. The raw materials for photosynthesis
- A B C carbon dioxide and water
- oxygen and water
- carbon dioxide and glucose
- oxygen and glucose
- 8. ATP synthesised during photolysis provides the carbon fixation stage of photosynthesis with
- glucose
- B C carbon dioxide
- energy
- hydrogen

- 10. The following stages occur during photosynthesis.
- W glucose is formed
- Ϋ́Υ water is broken down to produce H
 - glucose is converted to starch
 - H is combined with CO₂

The correct order for these stages is

- W Z A Χ Υ
- Z В Υ Χ W
- Ζ C Χ W Υ
- D Υ Χ Z W

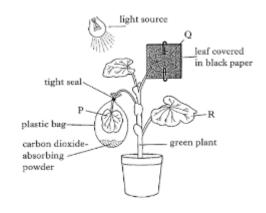
11. The graph shows the effect of varying the light intensity, temperature and carbon dioxide concentration on the rate of photosynthesis.

The rate of photosynthesis is being limited by

	S	Т
Α	Temperature	Light intensity
В	Light intensity	Temperature
С	Carbon dioxide	Temperature
D	Light intensity	Carbon dioxide

- 12. Photolysis is the
- Α combining of water with CO₂
- В use of water by chlorophyll to split light
- C release of energy from water using light energy
- D splitting of water using light energy

13. The word equation for photosynthesis is


Α CO₂ + water glucose + O_2

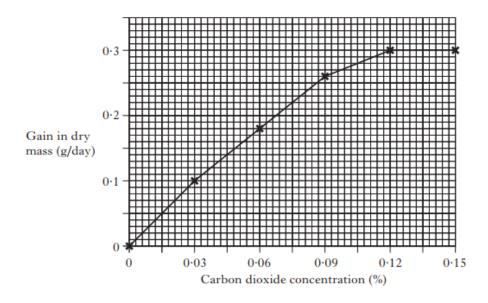
В O_2 + water glucose + CO₂

C glucose $+ O_2$ CO₂ + water

D $CO_2 + O_2$ glucose + water

14. The diagram below shows an investigation into photosynthesis.

Which of the following statements is correct?


P, Q and R make food Only P and Q make food Only P makes food A B C D

Only R makes food

15. Which of the following rows in the table correctly describes the type of carbohydrate with its use?

	Type of carbohydrate		
	Starch Cellulose		
А	Structural	Structural	
В	Structural	Storage	
С	Storage	Structural	
D	Storage	Storage	

1. The graph below shows the effect of carbon dioxide concentration on the growth of plants.

(i) State how the growth of plants was measured in this investigation?

(ii) Use data from the graph to describe the relationship between carbon dioxide concentration and the gain in dry mass.

1

1

(b) Carbon dioxide concentration is a limiting factor in photosynthesis. Name one other limiting factor.

(c) Photosynthesis uses carbon dioxide for the growth of plants.

(i) Name the stage of photosynthesis which uses carbon dioxide.

______ 1

(ii) Name one other substance used in this stage.

______1

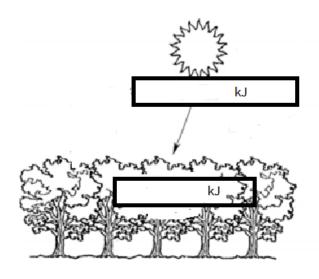
Producers & Consumers

	the organisms in an ecosystem can be divided into one of two groups
	plants that make their own
Tł	ney do this in a process called
2.	
	another organism in order to get
Тур	pes of Consumers
1.	Primary consumers
	Primary consumers eat and are termed
	Primary consumers arehunted by secondary consumers &
	are termed
2.	Secondary consumers
	Secondary consumers arethat hunt and are termed
	They eat consumers
	and are also termed

Consumer diets	Definition
	Consumers that feed on ONLY plants
	Consumers that ONLY feed on other animals
	Consumers that feed on both plants and animals

Producers & Consumers Flow Chart

Type of organism in food chain Make their own food by photosynthesis Eats other organisms to gain food consumer consumer Only eat producers to gain food Eat primary consumers to gain food


Animal HUNTED by secondary consumer

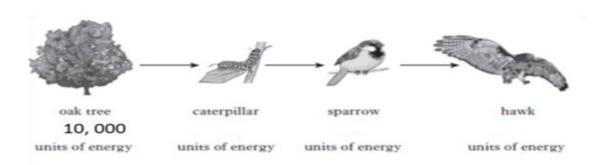
Animal that **HUNTS** primary consumer

Food Chains

ь.	$\boldsymbol{\smallfrown}$	$\boldsymbol{\cap}$	~	c	h	21	n	c

Food chains are arranged as follows and always start with a
(green plant):
The arrows in a food chain show theof
flow as one organism eats another organism.
Energy Conversions
Only a percentage of the light energy from the sun is absorbed
by plants through the green pigment stored in the
chloroplasts.
Question
If 4,000 000 KJ of light energy are given out by the sun and chlorophyll is able to absorb 5% of this energy, calculate the number of units of energy available for new plant
Material.

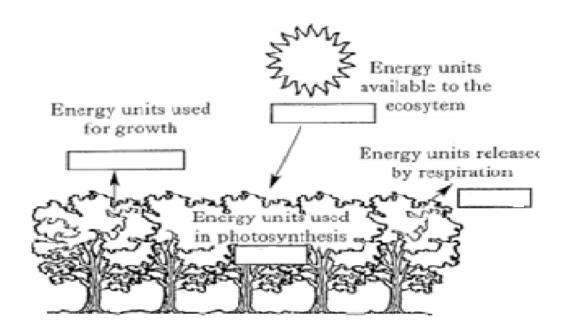
Energy conversions in a food chain


Transferring Energy

When transferring energy from one level to the next in a food chain

- 1. The majority of the energy is lost/gained (approximately _____%) as
- a) _____
- b) _____
- c) _____
- 2. Only a very small quantity of energy is available at the next level in a food chain

for _____(approximately ____%).


Example

Energy conversions in a food chain

If 4 million units of energy are available to the ecosystem from the sun and chlorophyll is able to absorb 40,000 kJ for photosynthesis . Of this 28,000 kJ are released by respiration leaving 12,000 kJ for growth.

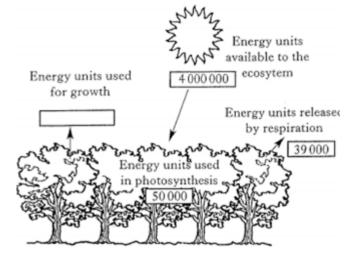
a) Use the information above to complete the flow chart.

b)	Calculate the percentage of the energy from sunlight absorbed by trees used for photosynthesis.
	%
c)	The trees are eaten by primary consumers. State the units of energy available to The primary consumers after eating the trees.
	kJ
d)	State one way the energy is lost between the trees and the primary consumers.

Energy Calculations

1. Plants convert 1% of the light energy they receive from the sun into new plant material.

In the food chain below, plant plankton receive 100,000 units of light energy from the sun.


plant animal sprats mackerel plankton plankton

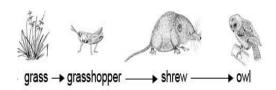
How much of this energy from the sun is converted into new plant material?

- A 10 000 units
- B 1000 units
- C 100 units
- D 10 units
- 2. The diagram represents energy flow in a woodland ecosystem.

The number of energy units for growth is

- A 11,000
- B 89,000
- C 3, 950 000
- D 3, 961 000

- 3. The percentage of the energy from sunlight absorbed by trees and used for photosynthesis is
- A 1.25%
- B 12.5%
- C 98.75%
- D 8000%
- 4. An ecosystem receives 6000 000 units of energy from the sun.


Of this energy, 95% is **NOT** used in Photosynthesis.

The amount of energy captured by the producers in this ecosystem is

- A 30,000 units
- B 300,000 units
- C 570,000 units
- D 5700,000 units
- 5. The following diagram shows a food chain in a forest ecosystem, and the energy received by each organism in the food chain.

15,500kJ

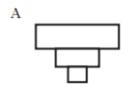
Which of the following shows the quantity of energy received by the grasshopper?

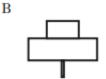
- A 15,550kJ
- B 1500kJ
- C 1550kJ
- D 150kJ

Food Chains & Pyramids

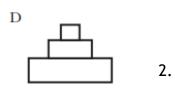
Food chains can be converted into pyramids as follows.

Food	d Chain		
Pyra	——→ amid		
Тур	es of pyramid		J
1.	Pyramids of Numbers Show the total food chain.	_ of organisms at each	_ of a
2.	Pyramids of Energy Show the total of a food chain.	contained within organisms at each	
	Remember only approximately stage of a food chain.	% is passed on for at ea	ch

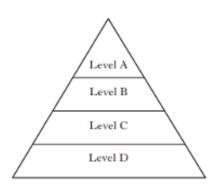

Pro	oblems with Pyramic	ds of Numbers	
A pyramid ofdoes not always repres	is less sent a pyramid shape.		as it
Example 1 A producer always has	the largest quantity of		but not always
	of organisms when _		•
Oak tree	squirrel	fox	
Pyramid of energ	у	Pyramid of number	ers
Example 2 A secondary consumer	always has the least	but not a	always the
n	umbers of organism when _	are the t	top consumer
Grass	sheep	flea	
Pyramid of energ	y	Pyramid of	numbers
•			


Food Chain & Pyramids Mindmap

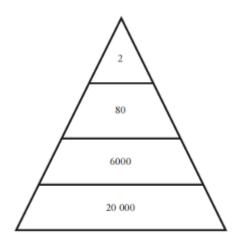
Food Chain & Pyramids Quick Quiz


1. Which of the following diagrams represents the pyramid of numbers for the food chain below?

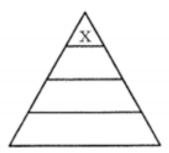
Beech tree → greenfly → ladybirds



C


The Treecreeper is a bird which feeds on small insects on the bark of trees during the day. What is the correct description of the Treecreeper's niche?

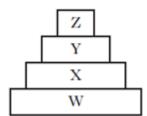
- The place where it lives
- В The insects on which it feeds
- C The plants and animals in the woodland
- D Its role within the woodland ecosystem
- The diagram below shows the levels in 3. a pyramid of numbers.


Which level in the pyramid contains primary consumers?

4. The diagram below shows the number of organisms at each level in a pyramid of numbers.

How many organisms are consumers?

- 2
- 82
- 6000
- B C D 6082
- 5. The diagram below shows the pyramid of energy for a food chain.

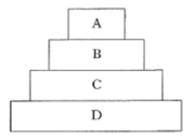

There is less energy at Level X in the pyramid because

- energy is stored in each level and not Α passed on
- energy is lost at each level in a food В chain
- C the energy is concentrated in fewer organisms
- D organisms in level X are very small

Food Chain & Pyramids Quick Quiz

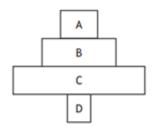
9.

The diagram below shows a pyramid 6. of energy.


Which of the following is a cause of this energy loss?

On average, 90% of energy is lost at each energy transfer in a food chain.

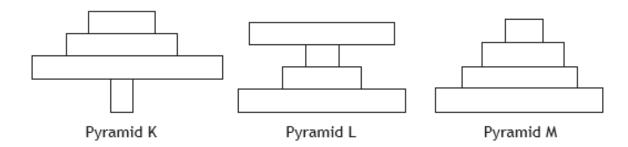
- digested material
 - movement
- A B C D growth
- cell repair


Z represents the total mass of

- producers
- primary consumers
- A B C D predators
- secondary consumers
- 7. The following diagram shows a pyramid of energy. Which level is the results of the energy from the sun being converted into chemical energy?

- 10. Which of the following describes a primary consumer?
- It eats the secondary consumer. Α
- В It is preyed upon by the secondary consumer.
- C It is always at the beginning of the food chain.
- D It can make its own food.

8. The diagram below shows a pyramid of numbers.


Which letter represents the producer?

Food Chains & pyramid Questions

1. (a) A food chain is shown below along with three pyramids of numbers.

grass → zebra → lion → flea

Identify the pyramid which represents the food chain shown.

1

Pyramid _____

(b) This food chain can also be represented by a pyramid of biomass.
State the meaning of the term "Pyramid of energy.

1

(c) (i) Calculations were made to estimate the energy content of a food chain involving three species.

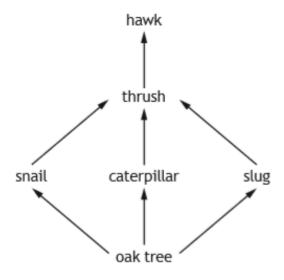
Two of these values are given in the table below. Complete the table by calculating the missing energy value.

1

Space for calculation

Organism	Energy (kJ)
heather	97,000
hare	
golden eagle	970

(ii) State one way in which energy may be lost between stages in a food chain.


4

2.		culations were made to estimate the energy content of a food chain involving ee species.	
		heather hare golden eagle	
		wo of these values are given in the table below. Compete the table by alculating the missing energy values.	
	S	pace for calculation	
		Organism Energy (kJ)	
		Heather 25,000	
		Hare	
		Golden eagle 250	1
3.	b)	State two ways in which energy can be lost between stages in a food chain? 1 2 diagram below shows a food web in a woodland ecosystem. Birds Rabbits Mice Grasshoppers	2
	a) b)	Name all the carnivores in the food web above. Describe what the arrow in the food web represent?	1

Food Webs
food chains make up food
Food web example Grass is eaten by rabbits which are eaten by foxes. Grass is also eaten by buffalo which are hunted by lions. Lastly zebras which are also hunted by lions also eat grass.
Grass Quick Questions
. Name the producer(s) in the food web 1
. Name all the primary consumers in the food web
. State an example of a predator and a prey from the food web.
Predator prey 1
. Give an example of a herbivore from the diagram above.

Food Webs

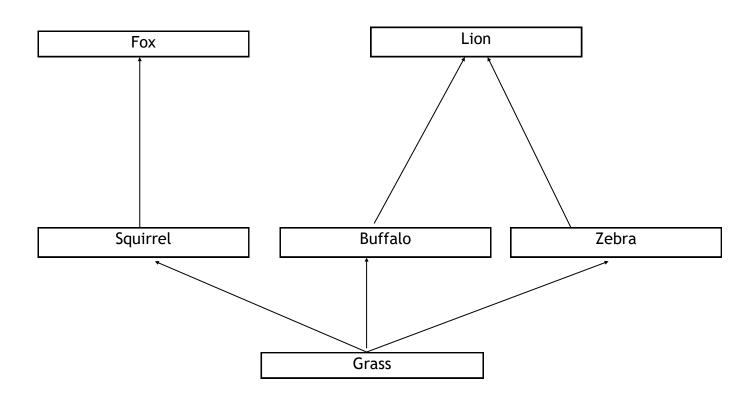
The diagram shows part of a food web.

a) Name all the primary consumers

______ 1

b) Name the producer (s)

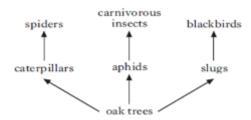
1


c) Name two species in competition with each other

______1

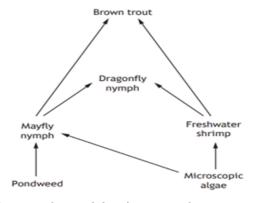
- D) A chemical was used to control the number of slugs. Which of the following could be a result of a large decrease in slug numbers?
- A An increase in snails.
- B An increase in hawks.
- C A decrease in caterpillars.
- D A decrease in oak trees.

Food Webs


When one organism is removed this will affect ALL other organisms by increasing/decreasing their numbers

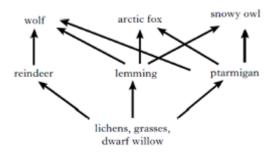
When grass is removed buffalo numbers would	increase	decrease
Explanation		
When foxes are removed, squirrel numbers would	increase	decrease
Explanation		
When zebra are removed, lion numbers would	increase	decrease
Explanation		
When buffalos are removed, zebra numbers would	increase	decrease
Explanation		

Food Web Questions


1. The diagram below shows part of a food web in an oak woodland.

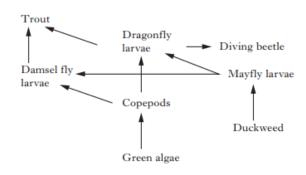
The use of insecticide in a nearby field results in the death of most aphids and caterpillars. Which line in the table correctly identifies the effect of the number of slugs and carnivorous insects.

	Number of slugs	Number of carnivorous insects
A	increases	decreases
В	decreases	stays the same
С	decreases	increases
D	increases	stays the same


2. The diagram below represents a freshwater food web.

The number of freshwater shrimps was found to have dramatically decreased. Predict the effect of the numbers of dragonfly and microscopic algae.

	Dragonfly	Microscopic algae
Α	decrease	decrease
В	increase	increase
С	Increase	decrease
D	decrease	increase


3. The diagram below shows part of a food chain in the Arctic tundra.

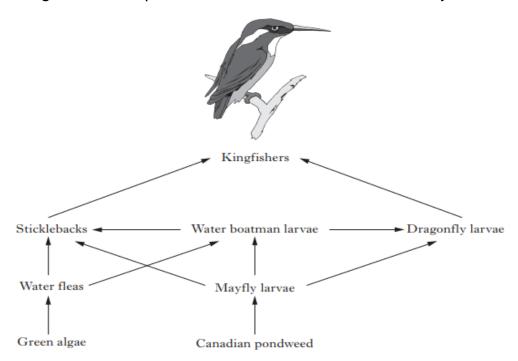
A reduction in the lemmings will cause

- A an increase in reindeer and a decrease in lichen
- B an increase in ptoarmigan and reindeer
- C a decrease in dwarf willow and a decrease in reindeer
- D a decrease in reindeer and wolves

4. The diagram below shows part of a food web in a freshwater ecosystem.

A reduction in the population of Dragonfly larvae will cause

A an increase in the populations of both the trout and diving beetle


B an increase in the populations of both the trout and copepods

C a decrease in the populations of both green algae and damsel fly larvae

D an increase in the population of copepods and a decrease in the population of mayfly larvae.

Food Chain & Pyramids Quick Quiz

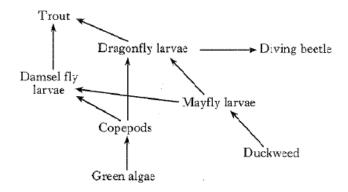
1. The diagram below represents a food web in a freshwater ecosystem

Select organisms from the food web to complete the food chain below.

a)	Name att the secondary consumers in this rood web.

1

1


1

- b) (i) Explain why the dragonfly larvae and the sticklebacks are in competition with each other.
 - (ii) With reference to this food web, explain why sticklebacks are likely to be more successful than dragonfly larvae if water boatman larvae are removed

Food Chain & Pyramids Quick Quiz

2. Below is a diagram representing a food web in a fresh water ecosystem

a) Create a food chain containing 4 organisms.

 \longrightarrow \longrightarrow

b) Identify all primary consumers in the food web.

1

1

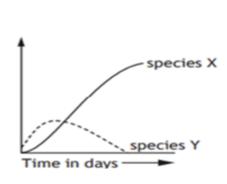
1

2

c) i. If Damsel fly larvae were to die out what would happen to the number of copepods. Justify your answer.

Copepods numbers— increase/decrease/stay the same

Justification _____

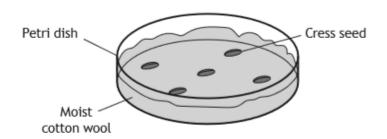

ii. If more Diving beetles were introduced to the forest what would happen to the number of dragon fly larvae. Justify your answer.

Dragon fly numbers— increase/decrease/stay the same

Justification

	Competition					
Con	npetition occurs when resources are in _	supply in ecosystems.				
	Resources animals compete for	Resources plants compete for				
Тур	es of competition					
,	·					
1.	Inter specific competition					
	Competition between	species for				
	Resources they require.					
	Example &	squirrels				
2.	Intra specific competition					
	Competition between the	species for				
	resources they require.					

Intra/Inter specific competition is ______intense and will lead to Survival of the fittest aka ______.


One organism will

_____One organism will _____

Inter specific Competition in Seeds Experiment

To investigate the effect of competition on the growth of cress seeds, five Petri dishes, labelled A - E, were set up and left for six days.

Each dish contained a layer of moist cotton wool with different numbers of cress seeds sown evenly across its surface. Dish A is shown in the diagram

The results are shown in the table.

Dish	Number of seeds sown	Number of seedlings surviving after six days	Percentage of seedlings surviving after six days
Α	5	5	100
В	10	10	100
С	20		95
D	40	34	85
E	80	60	75

a)	(i)	Complete the table by calculating the number of seedlings surviving in Dish C.	1
	(ii)	Name the independent variable.	
			1
	(iii)	Describe the relationship between the number of seeds sown and the percentage of seedlings surviving after six days.	

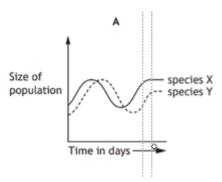
Inter specific Competition in Seeds Experiment

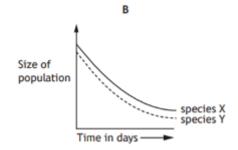
The box	diagram represents positions of organisms in a food chain. Tick one of tes to show the position cress would occupy in the food chain.
Nan	ne one resource, other than water, for which plants may be in competition
	trols are important for valid results. Describe the control that could ben this experiment.
	de whether this research would be described as reliable or not and tick ropriate box. Give a reason for your choice.

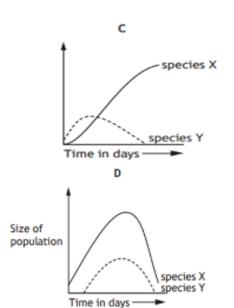
Niche and Competition

Thethat an or	ganism plays within a
An organism's niche includes:	
1	it requires
e.g	
2	with other organisms in the community
e.g	&
3	it can tolerate
e.g	3
To reduce competition, organism	s occupyniches.
Bird Example	
Differentof beak	s meant birds
could eat	_ food reducing
	competition.
Fish Example	
Different of n	nouth meant
Fish could eat	food
reducing	
competition.	

Niche Examples Research

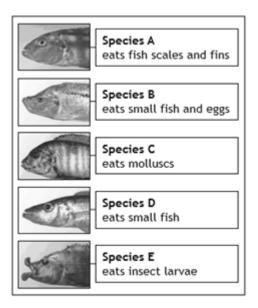

Organism	Resources required in ecosystem	Interactions with other organisms		Conditions it tolerates	
		Competition	Predators/prey		
Wildcat					
Red squirrel					
Brown trout					
Bracken					
Scottish Cross bill					
Red Grouse					


Food web, Niche and Competition Mindmap


Competition and Niche

- Which of the following best describes 1. a niche?
- A a living factor which affects biodiversity in an ecosystem
- B all the organisms in an area and their habitat
- Cthe role that an organism plays within a community
- D one particular species
- 2. Plants mainly compete for
- water, light and soil nutrients
- В water, food and soil nutrients
- C light, water and food
- light, food and soil nutrients
- 3. Which statement describes a type of competition and a matching example.
- Α Interspecific competition when two birch trees growing close together in a wood.
- В Interspecific competition when lions and hyenas feed on zebra
- C Intraspecific competition when seals and dolphins feed on small fish
- D Intraspecific competition when buttercups and daisies growing in the same field
- 4. A rabbit feeds on grass, is eaten by foxes and is a habitat for fleas. The statement above describes the rabbit's
- ecosystem
- B C community
- niche
- prey

Which of the following graphs show the effects of competition for the 5. same food between a successful and unsuccessful species?



- In which of the following would 6. competition not occur?
- Rabbits grazing in a field A
- Owls and foxes hunting for mice В
- C Daisies and dandelions growing in a
- D Algae and fish in a loch

Competition & Niche Questions

1. The cichlid fish below are all found in Lake Malawi in Africa.

a)	(1)	to have different diets.
		1
	(ii)	Predict which two species of Cichlipd would be in competition with each other if there was a shortage of fish eggs. Give a reason for your answer.
		Species and
		Reason
b)		State the term which describes the role that an organism such as the Cichlic plays within its community.

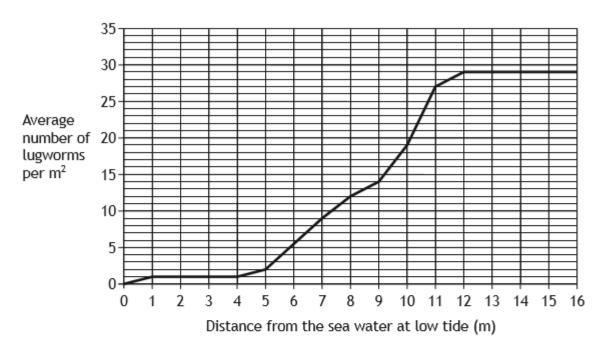
 During the investigation the students found four different species of periwinkles at different positions on the rocky shore.

The highest position that the sea water reaches on the shore is called the high tide level.

The bars in the table below represent the positions on the shore where each species of periwinkle was found.

Position on				
shore	Small	Edible	Rough	Flat
High tide level				

(i)	State which species of periwinkle is least likely to compete with the small periwinkle.	
	Explain your answer.	1
	Species	
	Explanation	
(ii)	Using the information given, explain why the competition between	
	these periwinkles is described as interspecific.	1


MARKS

2

1

3. (a) Lugworms live on the seashore in dark moist burrows under the sand.

The graph below shows the average number of lugworms at different distances from the seawater at low tide.

Describe the relationship between the distance from the seawater
at low tide and the average number of lugworms per m ² .

(ii) Calculate how many times greater the average number of lugworms at 11 metres is compared to 7 metres from the seawater at low tide.

Space for calculation

- (b) Dover sole and rex sole are different species of flatfish and are predators of lugworms. Curlews, which are a species of wading bird, also feed on lugworms.
 - (i) Complete the table below by placing a tick (/) in the correct box to show the type of competition that would occur between the different predators.

1

1

Type of Competition

Predator Intraspecific Interspecific

rex sole and curlew

curlew and curlew

rex sole and dover sole

(ii) A curlew gains an average of 165 kilojoules (kJ) of energy daily, by feeding on lugworms.

Select, from the following list, the value of the energy which is used for growth each day by the curlew.

Tick (✓) the correct box.

165 kJ

148·5 kJ

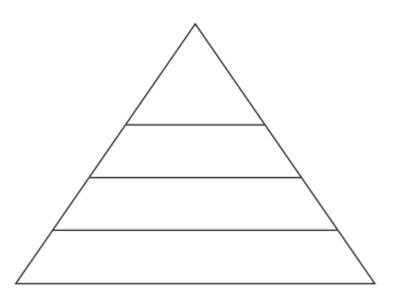
16·5 kJ

0 kJ

 (a) In an investigation, students estimated the population and biomass of some organisms found on part of a rocky shore.

The table below shows the results.

Organism	Population	Average mass of one organism (g)	Biomass of population (g)
Seaweed	220	500	110 000
Limpet	1 100		33 000
Crab	100	90	9 000
Gull	5	700	3 500


- (i) Complete the table to show the average mass of one limpet.

 Space for calculation
- (ii) The total mass of living material decreases at each level in the food chain. This can be shown as a pyramid of biomass.

Complete the diagram below by entering the names of the organisms from the table into the appropriate section.

1

(An additional diagram, if required, can be found on page 26)

Ecosystem & Biodiversity Terms

An ecosystem consists of all the **living** organisms (the community) in a particular habitat and the **non-living** components with which the organisms interact.

Four key terms

1. habitat

3. population

2. community

4. ecosystem

Biodiversity

Ecosystem Terms	Definition	Example
	Where an organism lives	
	One particular species	
	All the organisms living in one area	
	Living and non living parts with which the organisms interact	
ar	nd relative	number)

and relative	(number)
of living organisms.	
Importance of Maintaining Biodiversity	
Variation within a population makes it poss	sible for a population to
over time in response to	environmental conditions.

Biotic and Abiotic Factors

Factors affecting the distribution of organisms which can cause an increase or a decrease in _____ 1. ______ factors 2. ______ factors Living/Non living factor Living/Non living factor Examples of Biotic factors 1. 2. 3. Examples of Abiotic factors 1. 2. 3. 4.

Competition for resources, disease, food availability, grazing and predation are biotic factors. Light intensity, moisture, pH and temperature are abiotic factors. b Measuring abiotic factors such as light intensity, soil moisture, pH and temperature. Possible sources of error and how to minimise them.

Sampling Biotic Factors

Sampling techniques for abiotic factors

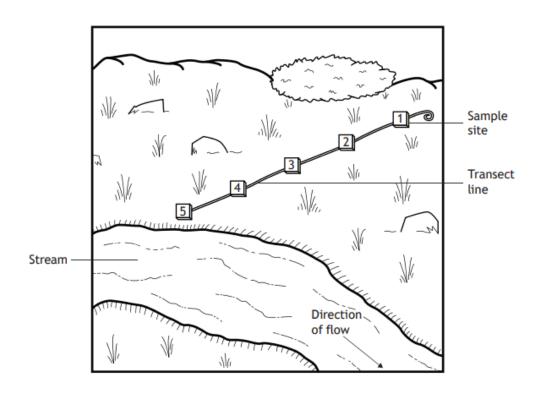
Abiotic factor	Sampling Technique	Description
pН		Place into soil and take
		from meter.
		Error Forgetting to probe
		between readings
Moisture		
Light intensity		Meter held at
		light intensity
		Error Casting a over meter
Temperature		Holding thermometer at top and read
		Error Avoid holding the

Sampling Biotic Factors

Sampling techniques for biotic factors

Name of Technique	Description	Sources of Error
Pitfall trap (animals)	Hole dug ground to ensure insects fall in. Covered in to ensure nothing eats the insects.	
Quadrats (animals & plants)	Throw quadrat at to make sure sampling is(valid) Number of squares that havecounted (abundance score).	Only throwing quadrat as results would not be

Abundance Score	
	o Daisy
Dafarrak wada sa a	△ Dandeli
Daisy abundance	 □ Plantain
Dandelion abundance	 ☆ Butterer
Plantain abundance	
Buttercup abundance	


Δ 0	000	000	o o *	- A
00	4	☆ ☆ △	쇼쇼	- 4 □
o ⁰	Δ	φ	Δ	□ ☆
0 4 0	Δ	ጎ	0	
% ↑ o	Δ 0 ⁰	Δ ^Δ Δ	Δ 0	

Line Transect

Measuring the abundance score at	intervals
----------------------------------	-----------

Not ______ whilst measuring an abiotic factor.

This allows the effect of an ______factor on the distribution of a plant to be worked out.

Sample Site	Abundance Score of daisies	Light intensity	Moisture	pН
1				
2				
3				
4				
5				

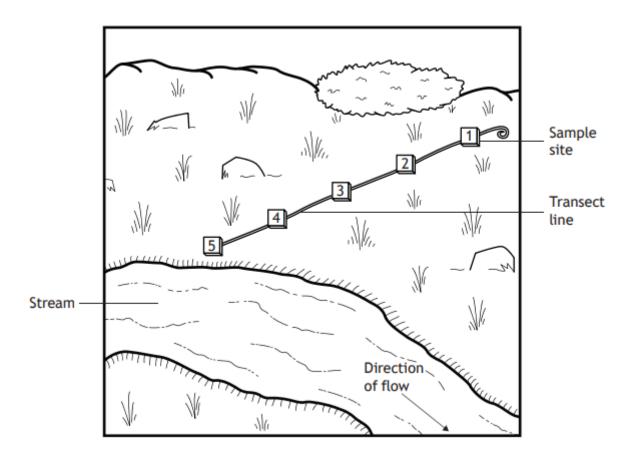
Influence of Abiotic Factors

The distribution of organisms may be affected by abiotic factors.

The table shows the results of a study into the effect of soil moisture levels on the distribution of three species of plant.

		Number of plants		
Sample site	Soil moisture (units)	Species E	Species F	Species G
1	20-2	11	15	12
2	23.4	13	14	11
3	22·1	12	16	10
4	24.5	15	17	15
5	26.6	18	13	12
6	28.4	19	15	14

(i)	State which species has its distribution most affected by the soil moisture levels.	1
(ii)	Species Calculate the average number of plants per sample site for species F. Space for calculation	1


_____plants

Questions

 A group of students wanted to investigate the effect of various factors on the distribution of the plant Yellow Iris.

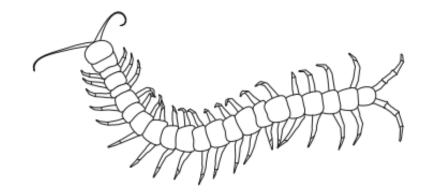
They set up a line transect and marked out five evenly spaced sample sites. The abundance of Yellow Iris was recorded, and values for soil temperature, pH and moisture were measured at the same sample sites.

Questions

The results are shown in the table.

Sample site	Soil temperature (°C)	Soil moisture (% saturation)	Soil pH	Yellow Iris abundance
1	12	15	5.4	0
2	13	39	5.5	3
3	11	56	5.6	9
4	12	78	5.5	21
5	11	90	5.4	25

	(a)	Describe the distribution of Yellow Iris along the transect line from sample site 1 to 5.	
	(b)	Identify which abiotic factor had the greatest effect on the distribution of Yellow Iris.	
(c)	De	obes were used to measure the soil moisture and soil pH. escribe a precaution that should be taken when using a probe to make re that the measurements are valid.	
	_		


Ecosystem & sampling Mindmap

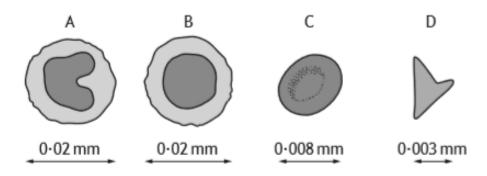
The following paired statement key can be used to identify invertebrate groups.

1.	Six legs	Hexapoda
	More than six legs	go to 2

- 1 pair of legs per body segment....... Chilopoda
 2 pairs of legs per body segment Diplopoda

Use the key to identify the invertebrate group to which the following organism belongs.

- A Dromopoda
- B Arachnida
- C Chilopoda
- D Diplopoda


The following key can be used to identify the different components of blood.

2	Diameter greater than 0.005 mm	red blood co
	Nucleus present	go to 3
1.	Nucleus absent	go to 2

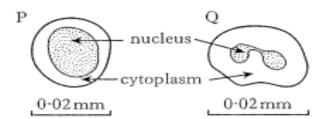
2. Diameter greater than 0.005 mm red blood cell
Diameter less than 0.005 mm platelet

Nucleus is circular lymphocyte
 Nucleus is not circular macrophage

Use the key above to identify which of the diagrams represents a platelet.

 A sample of polluted water was collected from a river. Bacteria in the sample were grown in the laboratory and then examined using a variety of tests.

The results are shown in the table below.


Bacteria	Gram stain reaction	Shape of cells	Reaction to penicillin
P	positive	round	resistant
Q	positive	rod	resistant
R	negative	rod	resistant
S	positive	round	sensitive

The following key identifies the four types of bacteria.

1	Gram stain positive	Go to 2
	Gram stain negative	Escherichia
2	Round shaped cells	Go to 3
	Rod shaped cells	Clostridium
3	Sensitive to penicillin	Micrococcus
	Resistant to penicillin	$Staphylococcus \ $
Use	e the key to name the four bacteria.	
Bac	eterium P	
Bac	eterium Q	
Bac	eterium R	
Bac	terium S	

2

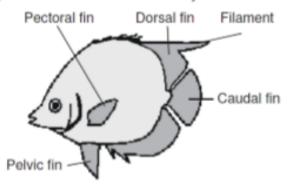
The key below can be used to identify four components of blood, P, Q, R and S.

- Large volume of cytoplasm present .. macrophage Small volume of cytoplasm present .. lymphocyte
- Diameter greater than 0-005 mm red blood cell Diameter less than 0-005mm platelet

Which line in the table correctly identifies the blood components?

		P	Q	R	S
	Α	lymphocyte	red blood cell	platelet	macrophage
	В	macrophage	lymphocyte	red blood cell	platelet
	С	platelet	macrophage	red blood cell	lymphocyte
	D	lymphocyte	macrophage	red blood cell	platelet

The table below contains information about four species of tit birds found in Scotland.


1.

Species	Crown of head	Black breast stripe	Tail length
Coal tit	Black	Absent	Shorter than body
Blue tit	Blue	Absent	Shorter than body
Long tailed tit	Grey	Absent	Longer than body
Great tit	Black	Present	Shorter than body

Complete the paired statement key to identify the four birds.

1.	Crown of head black	go to 2
	Crow of head	
2.	Black breast stripe absent	
	Black breast stripe	great tit
3.	Tail length	Blue tit
	Tail length longer than body	

The following diagram shows the fins of a butterfly fish.

The table below contains information about several species of butterflyfish in the genus *Chaetodon*.

Species	Pelvic fin	White spot below dorsal fin	Dark bars at tip of caudal fin	Dark spot on body near filament
C. auriga	Light	None	None	Small
C. quadrimaculatus	Dark	Two	None	None
C. reticulatus	Dark	None	Two	None
C. kleinii	Dark	None	One	None
C. ephippium	Light	None	None	Large

Use the information in the table to complete the paired statement key to identify the five butterfly fish species.

1.	Pelvic fin dark	go to 2
	Pelvic fin light	go to 4
2.	No white spot below dorsal fin	
3.	One Dark bars at tip of caudal fin	
4.	Small Dark spot on body near filament	

3. The diagrams below show the invertebrates collected by the pupils. They are not drawn to scale. Earthworm Snail Beetle Woodlouse (i) Complete the following key using information from the diagrams. 1 Legs Go to 2 No legs 1 2 12 legs or more Woodlouse Fewer than 12 legs Go to 3 3 Spots on body BeetleNo spots on body 1 Shell Snail1 (ii) Give three features of the beetle mentioned in the key.

1

(a) The table below shows some features of five British butterflies.

Butterfly species	Wing shading	Wing tip	Wing spots
Large White	pale	black	yes
Orange Tip	pale	orange	no
Peacock	dark	blue	yes
Red Admiral	dark	white	yes
Wood White	pale	black	no

Complete the key using the information given in the table.

1	Pale wing shadinggo to 2
	Dark wing shading
2	
	Orange wing tip Orange Tip
3.	Spots on wings
	No spots on wings
4.	Blue wing tip Peacock

3

 The following table gives information about some of the flowering plants found in the area.

Plant	Height range (cm)	Flower colour	Flowering period (months)
Pink Campion	30–90	pink	6
Ragwort	30–200	yellow	6
Meadow Grass	30–70	green	3
Buttercup	5–90	yellow	5

Using the information in the table, complete the three boxes in the paired statement key below.

3

1. Flower colour is yellow

Flower colour is not yellow

2. Height of plant can be over 100 cm

Height of plant is under 100 cm

3. Flowering period lasts only 3 months

Flowering period is longer than 3 months

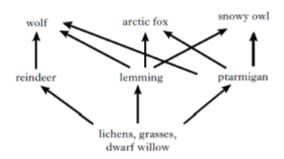
Completing Paired Statement Keys

7. The table below describes the features of the fluid which lead to the diagnosis of several joint abnormalities.

		Feature of synovial fluid		
		Viscosity	Cloudiness	Colour
	Normal	high	zero	light yellow
Diagnosis	Inflammation	low	slight	dark yellow
Diagnosis	Infection	low	high	dark yellow
	Blood leakage	intermediate	high	pink

Use the information from the table to complete the paired statement key to identify the diagnoses.

1.	Fluid pink	 Blood leakage
	Fluid not pink	go to 2
2.	Low viscosity	
	High viscosity	
3.		 Infection

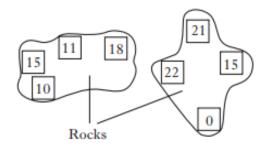

2

Ecosystem Questions

1. The total variety and abundance of all living things on Earth is described as

A B C ecosystem biodiversity community D population

2. The diagram below shows part of a food chain in the Arctic tundra.


A population in this food web is all the

plants

BC reindeer animals

- living organisms
- 3. A survey was carried out on the number of mussels attached to rocks on a seashore. The positions of the mussels are shown by squares in the diagram below.

The numbers of mussels at each position are shown in the squares.

What is the average number of mussels found per square?

A 14 B 16 C 56 D 112 4. The table below shows the relationship between planting density and the mass of seeds harvested for a cereal crop.

Planting density	Mass of seed harvested
(number of plants per	(grams per square
square metre)	metre)
4	60
8	86
15	105
32	77
128	21

Calculate the percentage increase in mass of seed harvested as planting density Increases from 4 to 15 plants per square metre.

45%

B C 75%

90%

105%

The guestions below refer to the following statements about a woodland ecosystem.

Α All the oak trees

All the plants

B C All the plants and animals

All the oak trees and blackbirds

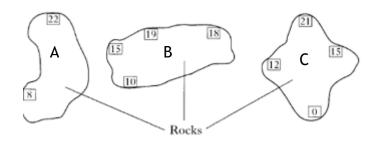
5. Which statement describes a population?

6. Which statement describes a community?

7. Which of the following statements is true of predation?

A It is an abiotic factor and causes a decrease in prey numbers

В It is an abiotic factor and causes an increase in prey numbers


C It is a biotic factor and causes a decrease in prey numbers

В It is a biotic factor and causes an increase in prey numbers

Sampling Biotic Factors

A survey was carried out to investigate the number of mussels attached to rocks on a sea shore. Quadrats measuring 10cm x 10cm were used in the survey.

The position of the quadrats and the number of mussels in each quadrat are shown in the diagram below.

- 8. How could the results have been made more valid?
- A sample only 1 rock
- B use a larger quadrat
- C record a wide variety of species
- D count each quadrat at the same time of day
- 9. How could the results have been made more reliable?
- A sample only 1 rock
- B use a larger quadrat
- C record a wide variety of species
- D count each quadrat at the same time of day
- 10. The most reliable data was gathered from
- A area B only
- B area B and C
- C area A only
- D area A and B only
- 11. Students used a quadrat to estimate the number of buttercups in a field. They threw the quadrat randomly three times in the area. In order to improve the reliability of their results they could have
- A asked another group of students to check that they had counted correctly
- B thrown the quadrat ten times instead of three
- C only thrown the quadrat when conditions were at an optimum
- D used a smaller quadrat for each of their samples.

Ecosystem Questions

- 12. Which of the following factors are both biotic?
- A Predators and temperature
- B Temperature and pH
- C pH and grazing
- D Grazing and predators
- 13. The following picture shows two lions in competition.
- 16. Which of the following best describes biodiversity?
- A The variety of organisms in an environment.
- B The abundance of organisms in an environment.
- C The variety and abundance of organisms in an environment.

community?

D All the plants in an environment.

A All the animals and plants in an environment.

B All the living and non-living things in

17.

B All the living and non-living things in an environment.

Which of the following describes a

C The place where an organism lives.

D The total number of one species of organism.

Which of the statements below refers to the type of competition shown above?

- A Intraspecific competition—same species competing for the same resources.
- B Intraspecific competition—same species competing for different resources.
- C Interspecific competition—different species competing for similar resources.
- D Interspecific competition—different species competing for different resources.
- 18. Which of the following describes an ecosystem?
- A The role an organism plays in its community.
- B All the animals and plants in an environment.
- C All the living and non-living things in an environment.
- D The place where an organism lives.
- 14. Which of the following factors are both abiotic?
- A Disease and grazing
- B pH and predation
- C Grazing and temperature
- D pH and temperature

- 19. An example of a biotic factor affecting a population of plants is
- A a leaf disease reducing the growth of lettuce plants
- B acidic soil preventing the growth of daisies
- C shade from buildings causing a decrease in the growth of grass
- D a cold winter causing a decrease in the growth of geranium plants
- Which row in the table identifies biotic and abiotic factors?

	Biotic factor	Abiotic factor
Α	Disease	Rainfall
В	Light intensity	Temperature
С	рН	Soil moisture
D	Predation	Food availability

Questions Sampling

 Complete the table below by putting the following terms under the correct heading.

2.

3.

Light intensity, predation, moisture, pH, food availability, grazing, disease, temperature

	Abiotic	Biotic		
D r	uring a woodland survey, a group of eading they took included the temp	students measured some abiotic factors. erature of the air and the soil.	(4)	
a)	Name one abiotic factor, other the measured.	nan temperature, which they could have		
b)	b) Describe how the students should have measured your chosen abiotic factor.			
			(1	
c)	Describe an error the students miglabiotic factor.	ht have made when testing your chosen		
	Name a technique used to sample th forest floor and an error that could	ne invertebrates living among the leaves of be made when using this technique.	(1 on	
Tec	hnique			
Pos	sible error			

77

(1)

(1)

Sampling Biotic Factors

(a)	meas facto	
		od
(b)	(i)	During the survey, the students sampled the leaf litter in the woodland using pitfall traps.
		However, when they checked the pitfall traps four days after setting them up, the students discovered that they were all empty. Describe an error the students might have made which would explain why there were no invertebrates in the traps.
(c)	The st	tudents saw a large number of butterflies in the woodland.
	Give a	a reason why no butterflies were collected with the invertebrates.

Questions

5.	A group of students carried out a five year investigation into plant growth in
	an area of abandoned farmland.

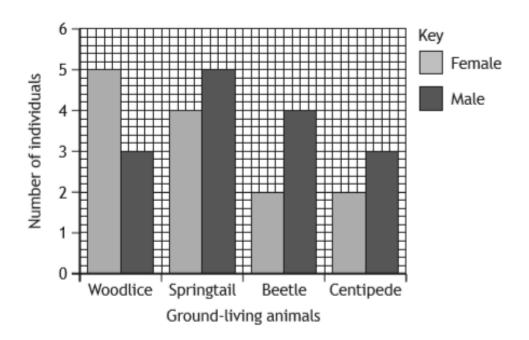
They sampled the area using quadrats.

The results are shown in the table below.

	Average abundance of each plant		
Year	Meadow grass	Ragwort	Pink campion
2011	8	15	9
2012	16	14	7
2013	24	12	4
2014	25	8	2
2015	25	5	1

(a)	(i)	Calculate the average decrease per year in the abundance of	
		ragwort over the five-year period.	1
		Space for calculation	

(ii)	Use information from the table to suggest why the ragwort abundance decreased over the five-year period.	


(b)	The students also sampled invertebrates such as beetles and spiders.	
	Name a sampling technique they could have used and describe a possible source of error with this technique.	2
	Sampling technique	

Source of error _____

Questions

- Sampling techniques can be used to estimate the abundance of plants and animals.
 - (a) In an investigation into ground-living animals in a woodland, a group of students collected and counted the animals they found.
 - Name a sampling technique which could be used to collect the ground-living animals.

(ii) The students sorted the animals into male and female, counted them and recorded the results in a bar graph.

- 1 Identify the animal which had the greatest overall abundance.
- 2 The students concluded that males were always more abundant than females.

1

1

Identify the animal for which this is **not** true.

(iii) It was decided that the samples were not fully representative of the area.

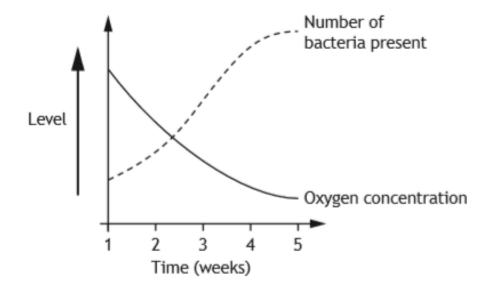
Suggest how the investigation could be improved.

Food Production

Food Yield		
human population rec	quires INCREA:	SED food
Food yield can be increased by the use of c	hemicals call	ed
12.		
Fertilisers		
Increase crop yield by increasing the		nutrient levels
() of the		which allows
plants to produce	for	synthesis
Animals		
plants/animals to obtain a	amino acids fo	orsynthesis.
<u>Diagram</u>		

1.	_		er treated the soil in the area where he planted vegetables with a to increase the yield.	
	(a)	(i)	The chemical added to the soil by the gardener contained nitrates. Give the general name for this type of chemical.	1
		(ii)	Describe the use that plants make of nitrates.	1
		(iii)	When the vegetables were picked and weighed, the total yield was 42 kilograms. The previous year the total yield was 35 kilograms.	
			Calculate the percentage increase in yield. Space for calculation	1
			%	

Food Production


I	P	r٥	h	ler	ns	w	ith	Fe	erti	lise	rs

1.	Fertilisers can	into fresh water, adding	nitrates.
2.		will increase algal population	s causing
3.	Algal blooms reduce	 , killing aquatic	·
4.	Dead plants/algae become	for	
5.	Increasing numbers of for other organisms	reduce	levels
Sol	ution		
	crops can be used to	o reduce the need for fertilisers.	

Food Production

 Later in the year the gardener noticed that the algae in his pond had increased and now covered the surface of the water. He sampled the pond water over 5 weeks and measured its oxygen concentration and number of bacteria present.

The results are shown in the graph.

(i) What name is given to the increased growth of algae in the pond?

1

(ii) Explain why the increased growth of algae resulted in an increase in the number of bacteria.

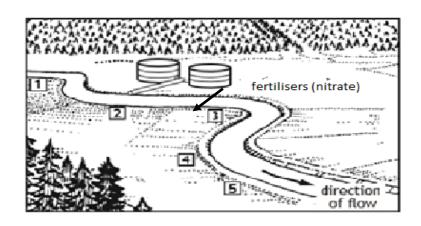
Problems with Algae Bloom

There are organisms present in water that can indicate the level of fertiliser pollution in water or air pollution.

These species are called _______ species.

Definition of Indicator Species

Their ______ indicates the level of

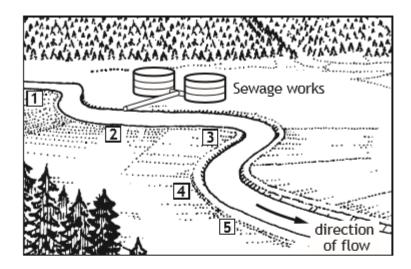

.

Example of Indicator Species	Environmental Conditions when present	Type of pollution
Stone fly nymph		
Mayfly nymph		
Lichen		Air

Algae Bloom & Indicator Species

On the diagram below, fertilisers (nitrate) enters the water at position 3,

At position 4 and 5 the	levels in the water will be high/low due to
of bacte	ria present from the algae bloom.
At position 1 and 2	levels in the water will be high/low due to
hacteria	a present as unstream from the algae bloom



Position	Oxygen levels in water (high/low)	Presence/absence of indicator species that thrives in deoxygenated water
1		
2		
3		
4		
5	86	

Indicator Species Questions

MAKK

A river was sampled at five sites as shown in the diagram below.

The following tables show the results of analysing the samples at each site.

Table 1

Site	Oxygen levels (Units)	its) Number of bacteria per 100m	
1	1.2	500	
2	0.04	150 000	
3	0.40	12 680	
4	0.54	3 400	
5	1.12	1 250	

Table 2

Organism Present	Site 1	Site 2	Site 3	Site 4	Site 5
Mayfly nymphs	23	0	0	0	8
Stonefly nymphs	42	0	0	0	21
Caddis fly larvae	18	0	0	10	15
Fresh water shrimp	2	0	0	1	1
Blood worms	1	5	24	7	1
Sludge worms	1	67	43	9	0

Indicator Species Questions

(a)	 (i) Using data from Table 1, describe the relationship betweenumber of bacteria and the oxygen level in the water. 						
	(ii)	Methylene blue is a chemical which can be used to compare oxygen levels in the water. The lower the oxygen level, the faster methylene blue changes from blue to colourless.					
		A sample of water from each of the five sites was tested.					
		Predict which sample would lose its blue colour fastest.					
		Sample from site number					
(b)	Use	data from Tables 1 and 2 to answer the following questions.					
	(i)	State which of the organisms in the samples would be found in areas of high oxygen content.					
	(ii)	Sewage in the river is a form of water pollution.					
		Describe the effect this pollution has on the number of different types of organisms in this river.					
(c)	Some	e species are known as indicator species.					
	Expla	ain what is meant by indicator species.					

Indicator Species Questions

2 Levels of air pollution can be estimated by the presence or absence of organisms called lichens.

Air pollution level	Most common type of lichen present	
Low	Shrubby	
Medium	Leafy	
High	Crusty	

Environmental scientists carried out a study on lichen species at four different sites and obtained the results shown in the table below.

	Number of lichen species present				
Site	Shrubby	Leafy	Crusty		
Α	0	5	19		
В	3	2	0		
С	16	3	0		
D	7	14	2		

(a) (i) Site A had the highest levels of	f air pollution.
--	------------------

Using information from **both tables**, describe the evidence supporting this statement.

(ii) Calculate the average number of leafy lichen species present at the four sites.

Space for calculation

(b) State the name given to species, such as lichen, which are used to estimate levels of pollution.

•

3 A river was sampled at six points along its length. The numbers of different animals, the oxygen concentration and the pH were recorded for each sampling point.

The results are shown in the table below.

		Se	amplir	ig poin	its	
	1	2	3	4	5	6
Mayfly nymphs	0	0	0	5	6	132
Dragonfly nymphs	1	1	0	0	1	1
Chironimid fly larvae	0	1	1	2	231	36
Molluscs	0	0	0	0	46	73
Oxygen concentration (%)	88	80	75	71	30	63
pН	5.6	6.0	6.5	7.3	7.5	8.0

Using these results identify which of the following conclusions is correct.

- A Chironimid fly larvae do not survive in water of a low oxygen concentration.
- B Molluscs survive better in water of a lower pH.
- C The distribution of Dragonfly nymphs is not affected by changes in the pH and oxygen concentration of the water.
- D The distribution of Mayfly nymphs is not affected by the oxygen concentration of the water.

Food Production

Pest	cicides (DDT)
Che	micals which are used to plants/animals which
	crops crop yield.
Prol	olems with pesticides
Pest	icides sprayed onto crops can in the bodies
of o	rganisms over time (bioaccumulation)
The	chemicals pass along the, increasing in
	and reach levels.
plan	DDT ts greenfly blue tits birds of prey
Que	stion
1.	Pesticides sprayed onto crops can get into food chains. The following statements refer to stages in this process.
	J Pesticides are absorbed by plants. K Pesticides build up in animals. L Plants are eaten by animals.
	Identify the order of steps by which pesticides could reach lethal levels in the bodies of animals.
	Letter

Food Production

Alternative Solutions

Alte	ernatives to p	esticides to increase c	rop yield include:	
1.		crops		
	Produce GN	A crops that are resista	nt to pests.	
	Example:	toxin in	GM tomatoes	
2.			control	
	Use of a Pest		or	to kill
	Example 1:	Lady birds are used to	o kill	
	Example 2:	Virus used to kill		-

Food Production Mindmap

Food Production Advantages/Disadvantages

Name of chemical	Fertiliser	Pesticides
Description	Provides to help plants produce	Chemicals which are used to plants/animals which crops.
Problem		DDT pesticides can in bodies of organisms moving up food chain reaching levels in top predators
Alternative		

- 1. Indicator species can provide information about
- number of organisms in a lake
- number of predators in a woodland
- A B C D levels of light in an ecosystem
- levels of pollution in a river
- 2. In 1997, the USA planted 8.2 million hectares of land with genetically engineered crops. By 1998 this had increased to 20.5 million hectares.

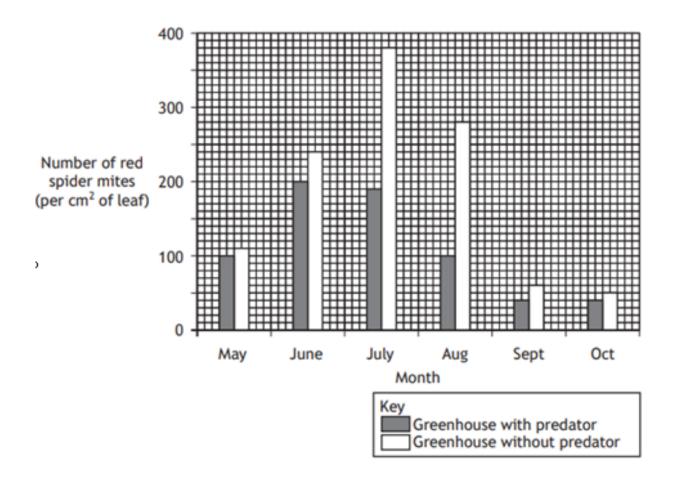
What was the percentage increase in the area sown between 1997 and 1998?

- 12.3%
- 66%
- B C D 150%
- 166.7%
- 3. DDT can be sprayed onto crops to kill insects. It can be washed off the crops by rainwater and flow into rivers where it accumulates in food chains. A typical freshwater food chain and the concentration of DDT in each organism is shown below.

The percentage increase in DDT concentration between the trout and osprey is

Food chain: algae → stickleback → trout osprey DDT concentration: 0.001 2.0 5.0 20.0

- A 15
- 100 В
- C 300
- D 400.


- 4. Which of the following statements describes the sequence of events when fertiliser leaches into a loch?
- A Algal bloom develops → algae die → oxygen concentration increases
- Algal bloom develops → algae die → oxygen concentration decreases
- Oxygen concentration increases → algal bloom develops → algae die
- Algae die → oxygen concentration decreases → algal bloom develops
- 5. The substance that provides nutrients to the soil for plants to make amino acids is
- pesticides
- В GM crops
- C fertilisers
- Ď biological control
- 6. Using a predator to kill a pest is an example of using
- pesticides Α В
 - GM crops
- Č fertilisers
- D biological control
- 7. Which of the following would NOT increase the yield of crops produced?
- Α pesticides and fertilisers
 - pesticide and biological control
- B C fertilisers and biological control
- D mutagenic agents and biological control
- An ecosystem consists of abiotic 8. factors plus a
- community and its biodiversity
- В population and its biodiversity
- Ĉ population and its habitat
- community and its habitat.

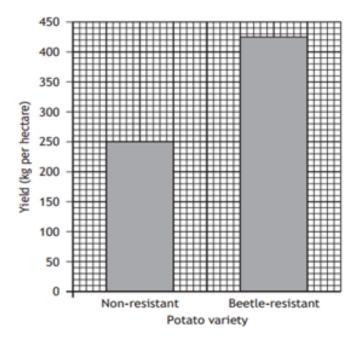
1.	A fo	food chain from a river is shown below.		
		algae → water flea → stickleback → perch		
		Using the information in the food chain, answer the following questions.		
a)	(i)	Identify an organism which is both predator and prey.		
		1		
	(ii)	Pesticides are known to run off from the land into rivers and enter the food chains.		
		Name the organism which would accumulate the greatest concentration of pesticides in its body over a period of time.		
		1		
b)		State one way in which energy may be lost between stages in a food chain.		
		1		
2.		In the fish farm, nitrates have to be removed from the water to prevent Build up. In some situations living organisms remove nitrates from the soil.		
a)		Name the type of organism which absorbs nitrate from the soil.		
		1		
b)		Nitrates supply organisms with nitrogen. Describe why nitrogen is needed.		

2. Red spider mites are a common pest which destroy tomato plants. Some of the mites are resistant to chemical pesticides.

Tomato growers aimed to investigate whether a predator would reduce the spider mite numbers in their greenhouse. Two identical greenhouses were used and the predator was released into only one greenhouse.

The results are shown in the graph below

a)	With reference to the aim of this investigation, give the conclusion that the
	tomato growers would have drawn from these results.



(ii)	The greenhouse contains tomato plants without predators was included as a control experiment.	
	State the purpose of the control in this investigation.	
		_ 1
b)	State the term which describes the use of a predator as an alternative to pesticides.	
		1
3.	Fresh water environments such as Lake Malawi can be affected by human	
J.	activities such the overuse of fertilisers.	
	Rearrange the following statements to show how this might occur.	
	1. nitrates leach into water	
	2. fish die	
	 over use of fertilisers oxygen levels decrease 	
	5. algae bloom develops	
	Place the statements numbers in the correct box.	1
	3	

4. Certain varieties of potato plant are eaten by beetles, reducing the yield of potatoes. A beetle resistant variety of potato plant was developed.

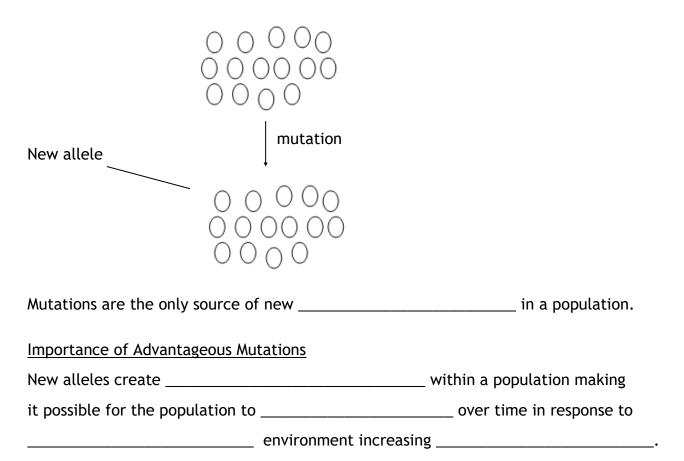
In an investigation, the beetle-resistant variety was grown outdoors in one field and the non-resistant variety grown in another.

The yields of both varieties were recorded and the results are shown in the graph below.

a)	Describe how the reliability of the results can be improved.

b) Calculate the difference in yield between the two varieties.

_____ kg per hectare


c)	Identify a variable that would have to be kept the same between the two fields to ensure the results were valid.	
		1
d)	Genetic engineering was used to develop the beetle-resistant variety of potato plant.	
	Before the development of genetic engineering, farmers used other methods to control the beetle numbers in their potato fields.	
	Name one of theses methods.	
		1

Types of Mutations & Mutation Rate

Mutation					
	change to		material		
Type of Mutation	Effect on survival		Example		
Advantageous					
Disadvantageous					
Neutral					
Rate of Mutations					
Mutations occur _				_ i.e. cannot	
determine when t	hey will happen.				
However		factors	can		_ the
mutation rate.					
Environmental fac	ctors.				
1		2			
E.g.		E.g.			

Advantageous Mutations

Diagram of alleles in a population

Peppered moth example

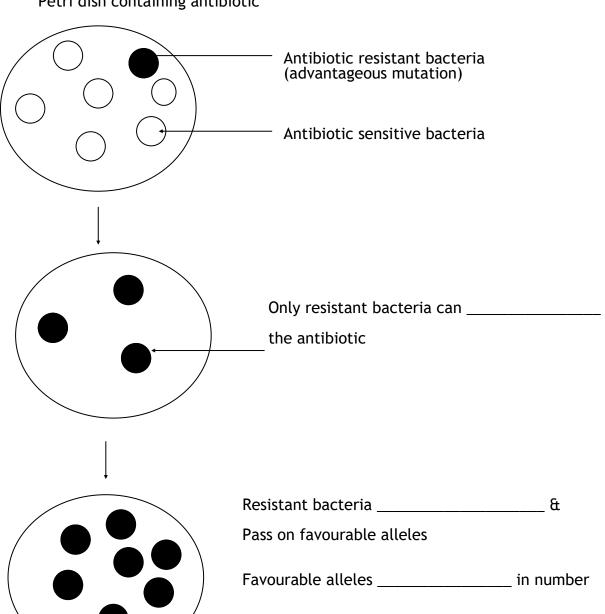
New alleles & Adaptations					
The following adaptations	The following adaptations are a result of a spontaneous				
which create	alleles which	survival			
Desert Mammal Adaptations					

Galapagos Finches

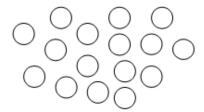
Natural Selection & Selection Pressures

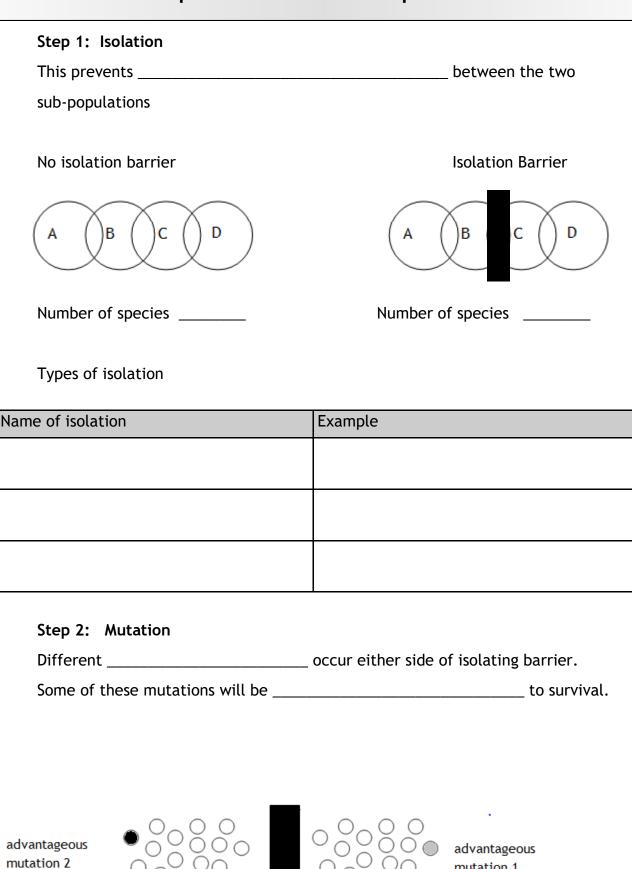
Each species produces	offspring than the environment
can sustain creating a strong _	pressure for
Selection pressure and Alleles	
Advantageous alleles	
Increased selection pressure	
For the best	individuals who have
alle	eles that create a selective
for	
Deleterious alleles	
Decreased selection pressure	
For poorly	individuals who have less
	alleles which are removed as these individuals
out.	
Frequency of Advantageous al	leles
Only those with	alleles are alive
topas	sing on
The frequency of advantageous	alleles will therefore increase/decrease
within the population.	

Bacteria Antibiotic resistance example


Allele 1

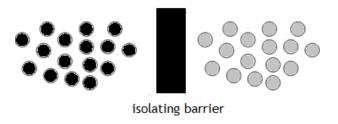
Bacteria sensitive to antibiotic and are killed by it.


Allele 2


Advantageous mutation making bacteria ______ to antibiotic and are no longer ______

Petri dish containing antibiotic

	stage process where	species becomes	different species
Step1)
Step 2	00000		
Stan 3	0000		
Step 3	0000		
Step 4		_	

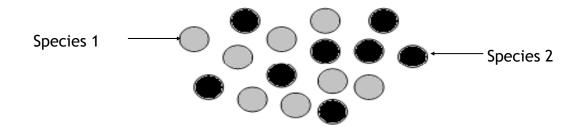


isolating barrier

e.g.

e.g.

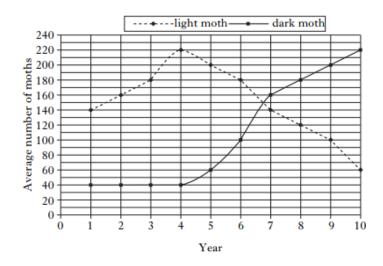
Step 3: Natural Selection



The two groups cannot ______ to produce

Step 4: Two different species formed

_____ offspring.


They are now _____ different species which are genetically _____.

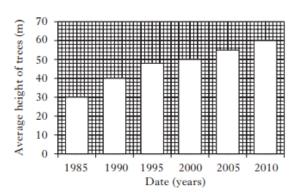
Step A	Step B
Step D	
	Mutation B Mutation B
tate the three forms of isola ub-populations.	ation that prevent interbreeding between the
ab populations.	
nother term for survival of t	the fittest is
Another term for survival of to	the fittest is wo different species are produced during spec

Speciation Mindmap

1. The graph below shows the average number of 4. The peppered moth is found in two peppered moths, in a woodland, in June of each year over a 10 year period.

Studies have shown that an increase in the number of dark moths is related to an increase in the level of pollution in the atmosphere. Which of the following best describes what would happen to the number of moths if measures were introduced to reduce air pollution in year 10?

	Light moth	Dark moth	
A decrease		increase	
В	increase	decrease	
С	increase	increase	
D	decrease	decrease	


- 2. Survival of the fittest is also known as
- selection pressure
- natural selection
- BCD selective advantage
- species selection
- 3. Which of the following is a source of new alleles in a population?
- mutation
- isolation
- B natural selection
- environmental conditions

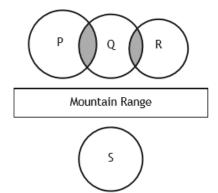
distinct forms. One form is dark coloured and the other is light coloured.

The moths rests on the trunks of the trees. Pale coloured tree-trunks in an area were darkened by pollution. What would happen to the numbers of the two forms of the Peppered Moth in that area.

- the numbers of each form would increase
- В the dark form would increase and the light form would decrease
- C the numbers of each form would decrease
- D the light form would increase and the dark form decrease

5. The chart below shows the average height of trees in a woodland over a 25 vear period.

What is the percentage increase in tree height between 1985 and 2010?


A 30%

B 50%

C 60%

D 100%

6. The diagram below represents four populations of animals P, Q, R and S and areas of interbreeding. Interbreeding takes place in the shaded areas.

How many species may evolve over time?

- 1 2 3
- A B C D
- 7. Antibiotic resistance in bacteria is an example of evolution. Which of the following shows the sequence of events leading to this?
- Natural selection → mutation → use of antibiotic
- Mutation → natural selection → use of antibiotic
- Mutation → use of antibiotic → natural selection
- Natural selection → use of antibiotic → mutation
- 8. Mutations result in changes to genetic material. Which of the following is not true of mutations?
- Radiation can increase their rate. A B C
- They always have a harmful effect.
- Genetic material is affected at random.
- New alleles may be produced

- 9. Which of the following is NOT a type of mutation?
- advantageous Α
- B C D disadvantageous
- neutral
- random
- 10. Which of the following is the correct order of speciation?
- A B mutation, natural selection, isolation
- isolation, mutation, natural selection
- natural selection, isolation, mutation
- isolation, natural selection, mutation
- 11. Which of the following is NOT a type of isolating barrier?
- A geographical
- В ecological
- C reproductive
- geological
- 12. The definition of a new species is that thev
- Α can interbreed and can produce fertile offspring.
- can interbreed but cannot produce В fertile offspring.
- C cannot interbreed and cannot produce
- fertile offspring. cannot interbreed but can produce D fertile offspring.
- 13. Natural selection occurs when there are selection pressures. Which of the following could be a result of selection pressures?
- Organisms with favourable alleles Α survive and reproduce.
- Organisms with new alleles always В have an advantage.
- C All alleles in a population increase in frequency.
- D All alleles in a population decrease in frequency.

The Scottish crossbill is a small bird which is native to Scotland. It inhabits pine 1. forests in northern Scotland and feeds on pine seeds using its crossed beak. State the term used to describe the role of the Scottish Crossbill described above a) within its community. 1 The shape of a crossbill's beak is a structural adaptation which is the result b) of a new allele being produced. Name the process by which new alleles are produced. 1 The Scottish Crossbill has been classified as a separate species but can still c) mate with other species of crossbill. Give a feature of any offspring produced from this mating which proves the parents are different species. 1 Decide if each of the following statements about evolution is True or false by d) Ticking the correct box. If the statement is false, write the correct word in the correction box to replace the word underlined in the statement.

Statement	True	False	Correction
Genetic variation within a population allows the population to adapt in a changing environment.			
Isolation barriers can be geographical, environmental or reproductive.			
Sub-populations evolve until they become genetically <u>identical</u> .			

- 2. Light and dark varieties of a moth can be found in wood land areas. These moths rest on the barks of trees during the day and can be eaten by birds. Normally the bark of trees in the woodland is light coloured. However in industrial areas, pollutants cause the tree bark to darken.
- The dark variety of the moth is the result of a random change in the genetic material. State the term used to describe this change.

b) An investigation into the population of these moths in a woodland was carried out. The moths were captured, marked and released. 24 hours later the moths were recaptured. The results are shown in the following table.

Variety of moth	Number of moths marked and released	Number of marked moths recaptured	Marked moths recaptured (%)
Light	480	264	55
Dark	520	208	40

(i)	Suggest a reason why the number of the moths recaptured was worked o a percentage.	ut as -
		_ 1
(ii)	The woodland was in a non-industrial area. Explain why the percentage of light moths recaptured was higher than dark moths.	_
		_ 1
(iii)	Name the process which results in the better adapted variety of moth being more likely to survive and reproduce.	
		1

3. The Scottish wildcat (Felis sylvestris grampia) is under threat of extinction with only around 400 pure-bred cats in the wild.

Wildcats live in conifer forests, dense woodland or rocky areas. They are carnivores that feed on herbivores such as rabbits, mice and voles. Although their young are eaten by pine martens and foxes, the main threat to their existence is interbreeding with the domestic cat.

- (i) Using information from the passage, complete the boxes below to show a food chain.
- (ii) Complete the table below using named examples from the passage.

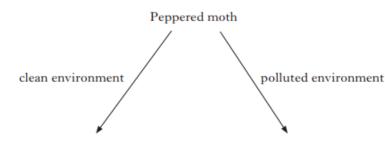
Term	Named example
habitat	
carnivore	
prey	

(iii) State what further evidence would be needed to support the hypothesis that wild cats and domestic cats are the same species.

1

1

(iv) Conifer plantations can show low biodiversity. The tall trees growing close together block the light to any ground-living plants and there is limited animal life.


Describe what is meant by the term biodiversity.

- 4. The peppered moth (Biston betularia) rests on the bark of trees.
 - The moth has two forms (P and Q) which are different colours.

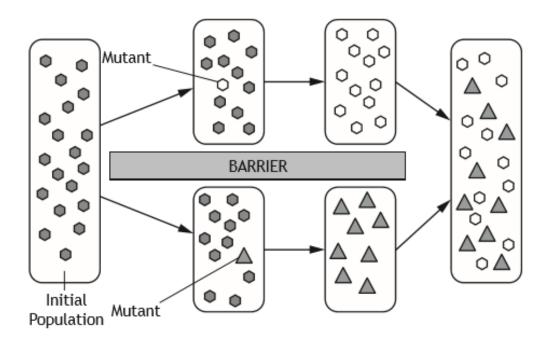
Form	Population numbers		
P	high		
Q	low		

Form	Population numbers		
P	low		
Q	high		

(i) Underline one option in each set of brackets to make the following sentences correct .

In the polluted environment form Q is $\left\{ \begin{array}{c} difficult \\ easy \end{array} \right\}$ for predators

to see since it is the $\left\{ \begin{array}{l} dark \\ light \end{array} \right\}$ form.


The numbers of each form in a population change over many

 $\left. \begin{array}{c} \text{environmental impact} \\ \text{natural selection} \end{array} \right\}. \hspace{1cm} \textbf{2}$

(ii) State the expected appearance of tree bark in the clean environment.

MARK

5. The following diagram shows the stages in the formation of a new species.

(a) Using the information in the diagram, describe how new species are

formed.			

6. MAININ Researchers have discovered an advantageous genetic mutation that causes high bone density in humans. One man in the USA was discovered to possess this mutation after he walked away without injury from a serious car crash. Further studies have found several members of the same extended family with this mutation. 20 members of the family provided blood samples for DNA and biochemical testing. 7 of them were found to have high bone density. The same tests were performed on another group of 20 unrelated individuals with normal bone density. The location of the gene mutation was able to be identified and it is hoped that the findings will help in developing medications to increase bone density for the treatment of conditions such as osteoporosis. (i) Calculate the percentage of the family who did **not** have the (a) mutation for high bone density. 1 Space for calculation (ii) Explain why the biochemical tests were also performed on the 20 individuals with normal bone density. (b) Name one factor which can increase the rate of mutation. (c) Mutations are the only source of new alleles. Explain why it is important that new alleles arise in a species.