## St Ninian's High School

**Biology Department** 

# Multicellular Organisms Part 3

Name: \_\_\_\_\_

Cultivating Excellence in Science

### Reproduction

#### **DNA content of Cells**

Every cell in the body contains \_\_\_\_\_ chromosomes

\_\_\_\_\_ set of \_\_\_\_\_\_ chromosomes from mum.

\_\_\_\_\_ set of \_\_\_\_\_\_ chromosomes from dad.

Therefore normal body cells contain \_\_\_\_\_\_ of chromosomes and are called

Examples of Body Cells

1.

. .

2.

3.

Exceptions

1.

| Contain | _ set of chromosomes and are called |  |
|---------|-------------------------------------|--|
|---------|-------------------------------------|--|

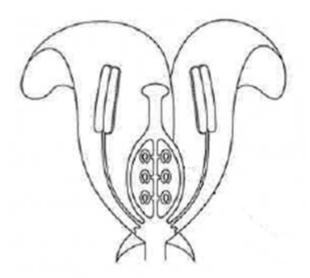
2.

\_\_\_\_\_ chromosomes as have no \_\_\_\_\_\_ therefore no \_\_\_\_\_\_.

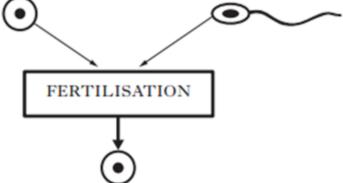
### **Sex Cells**

### Sex Cells

Another term for a sex cell is called a \_\_\_\_\_\_.


| Type of organism | Male | Female |
|------------------|------|--------|
|                  |      |        |
|                  |      |        |

#### Site of Gamete Production


Flowers

Pollen gamete is made in the \_\_\_\_\_.

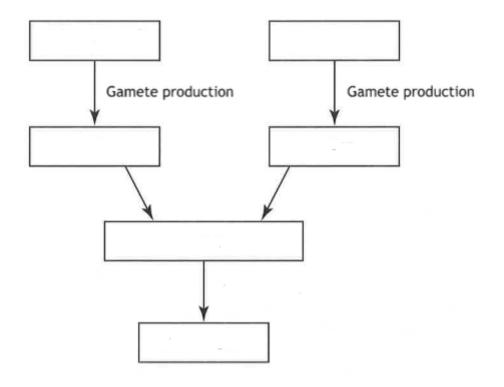
Ovule gametes are produced in the \_\_\_\_\_.



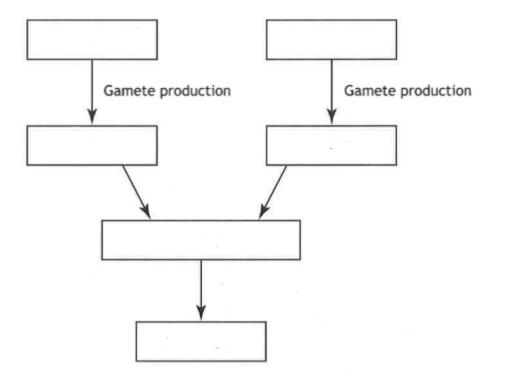
|                                          |               | Sex Cells       |              |              |
|------------------------------------------|---------------|-----------------|--------------|--------------|
| Site of Gamete Product                   | ion           |                 |              |              |
| <b>Animals</b><br>Sperm gamete is made i | n the         |                 |              |              |
| Egg gametes are produce                  | ed in the     |                 |              |              |
| Fertilisation                            |               |                 |              |              |
| The of                                   | the haploid _ |                 | and          | fuse to      |
| form a                                   | ·             |                 |              |              |
| Zygote                                   |               |                 |              |              |
| A zygote is a                            |               |                 |              |              |
| Why are gametes haplo                    | id?           |                 |              |              |
| Gametes only contain                     |               | _ of chromosome | s as their   | fuse to form |
| a                                        | _ with        | of ch           | nromosomes.  |              |
| Diagram of Fertilisation                 | I             |                 |              |              |
|                                          |               |                 |              |              |
|                                          |               |                 |              |              |
| $\odot$                                  | <             | Ì               | $\checkmark$ |              |
|                                          |               |                 |              |              |



## **Sex Cells**


Task

State whether the cell is haploid or diploid and from an animal or plant.


| Type of cell | Haploid/diploid | Animal/plant |
|--------------|-----------------|--------------|
| Testes       |                 |              |
| Pollen       |                 |              |
| Anther       |                 |              |
| Sperm        |                 |              |
| Ovule        |                 |              |
| Ovary        |                 |              |
| Egg          |                 |              |

## Producing Sex Cell Diagram

#### Animals



#### Plants



| Variation                                                   |  |
|-------------------------------------------------------------|--|
| Variation                                                   |  |
| Variation in the characteristics of a species are caused by |  |
| Mutations are changes to                                    |  |
|                                                             |  |

### Importance of Variation

Variation in a species is important for species \_\_\_\_\_

It ensures species can \_\_\_\_\_\_to \_\_\_\_\_\_to \_\_\_\_\_\_to

Example-peppered moth

## **Types of Variation**

#### **Types of Variation**

There are two types of variation in the population.

Discrete Variation
Variation can be split into \_\_\_\_\_\_.

Examples

Continuous Variation
Variation shows a \_\_\_\_\_\_ of values.

Examples

| Α                                             | _ controlled by               | . <u> </u> |
|-----------------------------------------------|-------------------------------|------------|
| Example                                       |                               |            |
| Most characteristics are polygenic variation. | and show                      |            |
| Graphs and Variation                          |                               |            |
| Discrete variation                            | Continuous variation          |            |
| Distinct groups                               | Range of values               |            |
| Single gene/polygenic                         | Single gene/polygenic         |            |
| Most/few characteristics                      | Most/few characteristics      |            |
| graph                                         | OR                            | _graph     |
| graph                                         |                               | _graph     |
| Task                                          |                               |            |
| Classify the following characteristi          | cs as continuous or discrete. |            |
|                                               |                               |            |

| Characteristic | Continuous | Discrete |
|----------------|------------|----------|
|                |            |          |
|                |            |          |
|                |            |          |
|                |            |          |
|                |            |          |

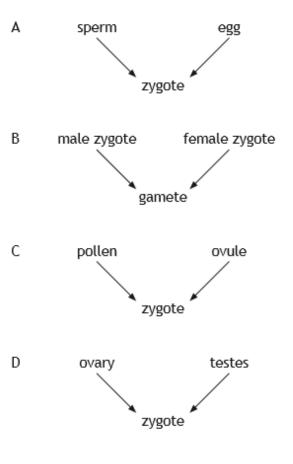
## Reproductive - Self Assessment

1. The diploid number of chromosomes in a cell from a kangaroo is 12.

Which line in the table below identifies the number of chromosomes for the cell type shown?

|   | Kangaroo Cell Type | Number of chromosomes |
|---|--------------------|-----------------------|
| Α | sperm              | 12                    |
| В | skin               | 6                     |
| С | nerve              | 6                     |
|   |                    |                       |

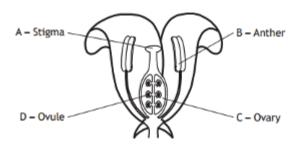
2. Which of the following pairs of human cells have the same number of chromosomes?


- A Liver cell and sperm cell
- B Kidney cell and sperm cell
- C Kidney cell and liver cell
- D Liver cell and egg cell

3. Variation in a characteristic can be discrete or continuous. The range of heights and weights for a group of students were measured and recorded. Ear lobe types were also examined and categorised into groups.

Which line in the table below identifies the type of variation shown by each of these human characteristics?

4. Which of the following diagrams represents the process of fertilisation in plants?

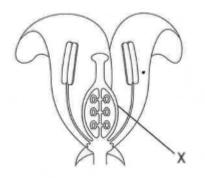

5. The diagram below shows the structure



of a flower.

Where are the male gametes produced.

|   | Height     | Weight     | Ear lobe types |
|---|------------|------------|----------------|
| Α | continuous | continuous | discrete       |
| В | discrete   | continuous | continuous     |
| С | discrete   | discrete   | continuous     |
| D | continuous | discrete   | discrete       |




6. Most features of an individual phenotype are

A controlled by a single gene and show continuous variation

B controlled by a single gene and show discrete variation

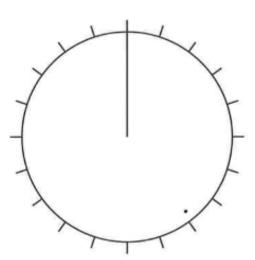
- C polygenic and show continuous variation
- D polygenic and show discrete variation.
- 7. The diagram below show structures in a flower.



Which line in the table represents X and the type of gamete it produces.

|   | Name of part X | Type of gamete produced |
|---|----------------|-------------------------|
| А | ovary          | male                    |
| В | ovary          | female                  |
| с | anther         | female                  |
| D | anther         | male                    |

- 8. Inherited characteristics controlled by more than one gene are called
- A continuous
- B polygenic
- C discrete
- D chromosomes
- 9. Pollen is produced in
- A testes
- B Ovaries
- C Zygote
- D Anthers
- 10. A cell which is haploid is
- A red blood cell
- B testes cell
- C ovaries cell
- D egg cell
- 11. A fertilised egg cell is called
- A gamete
- B zygote
- C diploid
- D discrete


**Multicellular Organisms** 

Eye colour in humans shows discrete variation.

The eye colour of 80 school students was recorded and the results are shown in the table below.

| Eye colour | Number of school students |  |
|------------|---------------------------|--|
| Brown      | 36                        |  |
| Green      | 12                        |  |
| Blue       | 24                        |  |
| Grey       | 4                         |  |
| Hazel      | 4                         |  |

(a) Complete the pie chart to show this information.
(A spare chart, if required, can be found on page twenty-four of this paper.)



(b) Calculate the percentage of the students with blue eyes.

1

1

1

2

%

(c) Give the meaning of the terms continuous variation and polygenic inheritance.

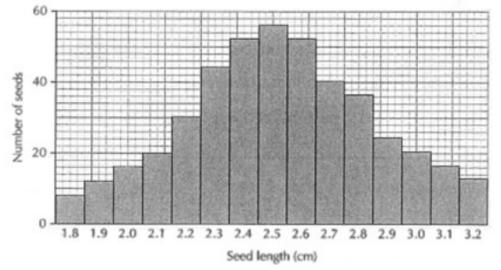
Continuous variation

Polygenic inheritance

**Multicellular Organisms** 

MAKKS

(a) The flow chart below shows a summary of events that occur during reproduction in a flowering plant.




(b) Complete the table below by inserting ticks (✓) into the correct boxes to show which of the cells in the diagram are haploid and which are diploid.
2

| Cell   | Haploid | Diploid |
|--------|---------|---------|
| Ovule  |         |         |
| Pollen |         |         |
| Cell Y |         |         |

### Variation

The bar chart shows variation in the length of seeds harvested from a broad bean plant.



a) Calculate the difference between shortest and longest seeds in the sample

\_\_\_\_\_ cm

b) Give evidence from the graph above to support the statement that seed length Shows continuous variation.

c) Give one example of a characteristic that shows discrete variation.

1

1

1

### Genetics

Genes & Variation

Many variations in characteristics between individuals in a population are controlled by our \_\_\_\_\_.

Genes are made up of \_\_\_\_\_\_ molecules and are found on

Diagram of Chromosome

Gene Alleles

Each gene contains different \_\_\_\_\_\_ called \_\_\_\_\_\_.

| Gene           | Allele | Allele |
|----------------|--------|--------|
| Dimples        |        |        |
| Tongue rolling |        |        |
| Ear lobes      |        |        |
| Eye Colour     |        |        |
| Hair colour    |        |        |

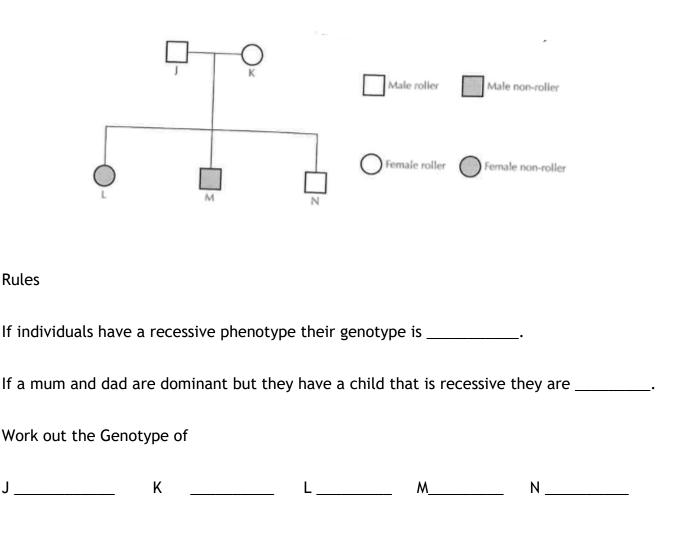
|          | Alleles                                                                                             |  |  |  |
|----------|-----------------------------------------------------------------------------------------------------|--|--|--|
| Тур      | es of Gene Alleles                                                                                  |  |  |  |
| The      | re are two types of gene allele.                                                                    |  |  |  |
| 1.       | allele (symbol—small/capital letter)                                                                |  |  |  |
| lf th    | is is present in an individual this characteristic is                                               |  |  |  |
|          |                                                                                                     |  |  |  |
|          |                                                                                                     |  |  |  |
| 2.       | allele (symbol—small/capital letter)                                                                |  |  |  |
| <b>-</b> |                                                                                                     |  |  |  |
| Inis     | characteristic is only visible if an individual has of these alleles.                               |  |  |  |
|          |                                                                                                     |  |  |  |
| Quio     | k Questions                                                                                         |  |  |  |
| 1.       | Define continuous variation.                                                                        |  |  |  |
|          |                                                                                                     |  |  |  |
|          |                                                                                                     |  |  |  |
|          |                                                                                                     |  |  |  |
| C        |                                                                                                     |  |  |  |
| 2.       | Define polygenic inheritance and state whether it is always shows continuous or Discrete variation. |  |  |  |
|          |                                                                                                     |  |  |  |
|          |                                                                                                     |  |  |  |
|          |                                                                                                     |  |  |  |
| 2        |                                                                                                     |  |  |  |
| 3.       | State the term given to the different versions of a gene.                                           |  |  |  |
|          |                                                                                                     |  |  |  |

| Genotype & Phenotype                    |                       |                       |           |
|-----------------------------------------|-----------------------|-----------------------|-----------|
| Phenotype & Genotyp                     | e                     |                       |           |
| Phenotype                               |                       | due to                |           |
| Examples                                |                       |                       |           |
| Genotype                                |                       |                       |           |
| The two                                 | present.              |                       |           |
| There are three potent                  | ial combinations of a | lleles—creating three |           |
| 1.                                      | 2.                    | 3.                    |           |
| Homozygous<br>Contain two of the<br>Aka | allele                | Heterozygous<br>Two   | _ alleles |
| Types of Genotype                       |                       |                       |           |
| 1.                                      |                       | Type of Genotype      |           |
| 2.                                      |                       |                       |           |

## **Family Tree Genetics**

#### **Family Tree Generations**

The first generation in a family tree is called the \_\_\_\_\_\_ generation

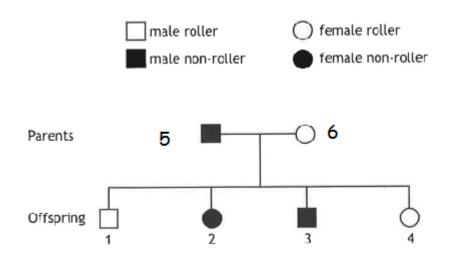

The second generation in a family tree is called the \_\_\_\_\_ generation

The third generation in a family tree is called the \_\_\_\_\_ generation

#### Worked Example Question

Tongue rolling is an inherited characteristic in humans.

Tongue rolling is determined by the dominant form of the gene, T and the non rolling condition is determined by the recessive t.




## Monohybrid Cross

Tongue rolling is an inherited characteristic in humans.

Tongue rolling is determined by the dominant form of the gene, T and the non-rolling condition is determined by the recessive t.

The family tree diagram below shows the pattern of inheritance in one family.



Tasks

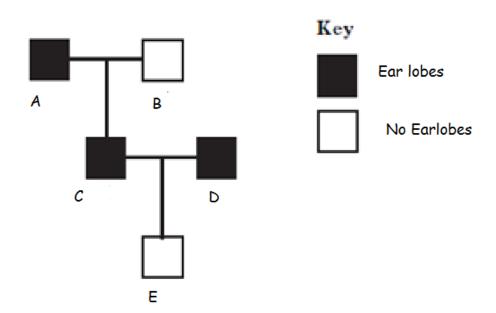
Add the P and F1 generation to the family tree above

Fill in the symbols for

| A) Parent 5 Parent 6 |  |
|----------------------|--|
|----------------------|--|

Offspring 1 \_\_\_\_\_ 2 \_\_\_\_ 3 \_\_\_\_ 4 \_\_\_\_

b) State the number of a homozygous individual.


c) State the number of a female roller.

## **Monohybrid Cross**

#### Worked Example 2

Having earlobes is an inherited characteristic.

Having earlobes is a dominant (E) condition and not having earlobes is recessive.



#### Task

Add P, F1 and F2 to the following family tree.

Work out the genotype of

| a) | C              | D                      | E           | 3 |
|----|----------------|------------------------|-------------|---|
| b) | В              | Α                      |             | 2 |
| b) | Which individu | uals are definitely he | terozygous. | 1 |

## Working out Dominant/Recessive alleles.

#### Handy Hints for Questions

If only one phenotype is present in F1 then it is the dominant characteristic.

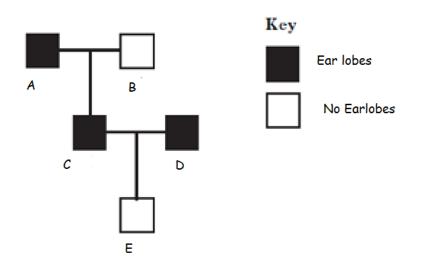
If ALL the F1 are the same this suggests the P Dominant parent is \_\_\_\_\_

#### Example

P generation Brown x Red

F1 generation All Brown

The dominant phenotype is \_\_\_\_\_\_.


The red parent's genotype is \_\_\_\_\_\_ and the brown's genotype is \_\_\_\_\_\_

#### Worked Example 1

A red flower was crossed with a white flower. All of the F1 had white flowers. The dominant characteristic was \_\_\_\_\_\_ flowers.

#### Worked Example 2

From this family tree which phenotype is the dominant allele.



## Working out Dominant/Recessive alleles.

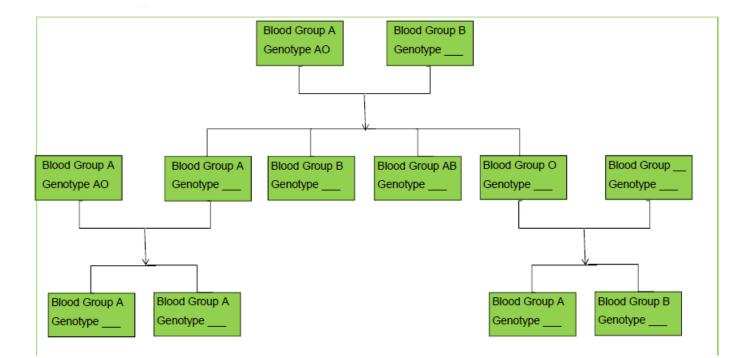
#### Worked Example 3

A pea plant with yellow seeds was crossed with a pea plant with green seeds. All of the F1 generation has yellow seeds.

The genotype of the parent plant with green seeds could be described as

- A heterozygous and recessive
- B heterozygous and dominant
- C homozygous and recessive
- D homozygous and dominant

The genotype of the parent plant with yellow seeds could be described as


- A heterozygous and recessive
- B heterozygous and dominant
- C homozygous and recessive
- D homozygous and dominant

## **Monohybrid Cross**

Everyone has one of four blood types, A, B, AB or O. The genetic information for the blood types is shown in the table below. Both A and B are dominant over O which is recessive.

| Blood Type | Genotype |
|------------|----------|
| А          | AA or AO |
| в          | BB or BO |
| AB         | AB       |
| 0          | 00       |

- a) Is blood group an example of discrete or continuous variation.
- b) Complete the family tree information below with blood type and genotype.



## Monohybrid Cross Family Trees

Tongue rolling is an inherited characteristic in humans.

Tongue rolling is determined by the dominant form of the gene, T and the non-rolling condition is determined by the recessive t.

The family tree diagram below shows the pattern of inheritance in one family.

|     |        | male roller O female roller                                                            |       |
|-----|--------|----------------------------------------------------------------------------------------|-------|
|     |        | male non-roller 🛛 🔵 female non-ro                                                      | oller |
|     | Parer  | nts O                                                                                  |       |
|     | Offsp  | pring 1 2 3                                                                            |       |
| (a) | (i)    | State the genotypes of the following individuals.                                      | 2     |
|     |        | Male 1                                                                                 |       |
|     |        | Female 2                                                                               |       |
|     |        | remate 4                                                                               |       |
|     | (ii)   | Identify which of the parents is homozygous.<br>Tick ( $\checkmark$ ) the correct box. | 1     |
|     |        | Male parent                                                                            |       |
|     |        | Female parent                                                                          |       |
|     |        | Both parents                                                                           |       |
|     |        | Neither parent                                                                         |       |
| (b) | Give t | the term used for different forms of the same gene.                                    | 1     |

(c) Tongue rolling is an example of a discrete variation.
Describe what is meant by the term discrete variation.

Family Tree Worked Example

1

## Monohybrid Crosses

#### Monohybrid Cross

A monohybrid cross aka \_\_\_\_\_\_ can be used to work out the \_\_\_\_\_\_ of having a child with a certain characteristic.

The usual style of question is:

- 1. Two homozygous individuals in P generation of differing phenotype
- 2. The F1 generation produces heterozygous individuals
- 3. The F2 generation produces a specific ratio of

\_\_\_\_\_ dominant individuals : \_\_\_\_\_ recessive individual.

#### Observed & Expected Ratios

However the expected ratio of \_\_\_\_\_\_ is not always the

\_\_\_\_\_ ratio

| Why? |          |         |
|------|----------|---------|
| -    | <br>is a | process |
|      |          |         |
|      |          |         |

| P generation  | Mother |        | Father  |
|---------------|--------|--------|---------|
| Phenotype     |        |        |         |
|               |        |        |         |
| Genotype      |        |        |         |
| F1 generation |        |        |         |
| Phenotype     |        |        |         |
|               |        |        |         |
| Genotype      |        |        |         |
|               |        |        |         |
| F2 generation |        |        |         |
|               |        |        |         |
|               |        |        |         |
|               |        | Male g | gametes |
|               | [      |        |         |

| Phenotype | 5                 |  |  |
|-----------|-------------------|--|--|
|           | Female<br>gametes |  |  |
| Genotype  |                   |  |  |

| P generation  |         | Mother | Fath   | ner    |
|---------------|---------|--------|--------|--------|
| Phenotype     |         |        |        |        |
|               |         |        |        |        |
| Genotype      |         |        |        |        |
| F1 generation |         |        |        |        |
| Phenotype     |         |        |        |        |
| Genotype      |         |        |        |        |
| F2 generation |         |        |        |        |
|               |         |        |        |        |
|               |         |        | Male g | ametes |
|               |         |        |        |        |
|               | Female  |        |        |        |
| Phenotype     | gametes |        |        |        |

Genotype

Punnet Square Examples

Cross a homozygous dominant individual with a recessive individual. What percentage show a recessive phenotype.

\_\_\_\_% recessive

**Punnet Square Examples** 

Cross a heterozygous individual with a recessive individual. What percentage show a dominant phenotype.

\_\_% dominant

Punnet Square Examples

Cross a two heterozygous individuals together. What percentage show a recessive phenotype.

\_\_\_\_% recessive

**Punnet Square Examples** 

Cross two recessive individual.

What percentage show a dominant phenotype.

\_\_\_\_\_% dominant

## Monohybrid Probability Questions

1) In mice, white fur is dominant to grey. Calculate the ratio you would you expect from a cross between a heterozygous individual and one with grey fur?

\_\_\_\_\_ white fur: \_\_\_\_\_ grey fur

2) In cats black hair is dominant to white hair. If 2 heterozygous black haired cats are mated, what is the chance of producing a white haired kitten?

\_\_\_\_% dominant

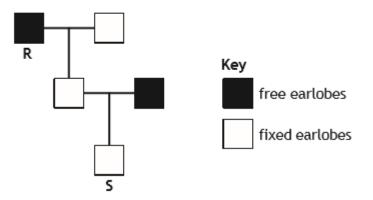
**Multicellular Organisms** 

## Monohybrid Probability Questions

3. In mice Y is the dominant gene for yellow fur and y is the recessive gene for grey fur. Y is lethal if it is present as a homozygous trait. Calculate the percentage of mice that would survive if a grey fur mouse was crossed with a heterozygous mouse.

\_\_\_\_\_% survival

4. A homozygous long-tailed cat is crossed with a homozygous short-tailed cat and produces a litter of 9 long-tailed kittens. Show the probable offspring which would be produced if two of these kittens were mated and describe the characteristics of the offspring.


Hint: work out the kitten's genotype first before carrying out monohybrid cross.

5. Wrinkled peas are recessive and round peas are dominant. If 80 peas were produced from a cross between two heterozygous individuals, how many peas were round.

\_\_\_\_\_ round peas.

## Genetics Self Assessment

In humans the inheritance of earlobe type is an example of discrete variation. The allele for free earlobes (E) is dominant to the allele for fixed earlobes (e). The diagram below shows the inheritance of this characteristic.



Which line in the table below correctly identifies the genotypes of individuals R and S?

|   | Genotype |    |
|---|----------|----|
|   | R S      |    |
| A | EE       | ee |
| В | Ee       | ee |
| С | Ee       | Ee |
| D | ee       | EE |

The following diagram shows the inheritance of coat colour in guinea pigs.

| P Phenotype   | Black guinea pig | х     | White guinea pig |
|---------------|------------------|-------|------------------|
| P Genotype:   | BB               |       | bb               |
| F1 Genotype:  |                  | Bb    |                  |
| F2 Genotypes: | BB and           | d Bba | and bb           |

Which of the following generations contain heterozygous individuals?

- A P and F1
- B P and F2
- C F1 and F2
- D P, F1 and F2

## Genetics Self Assessment

MAININ

Coat colour in Labrador dogs is an inherited characteristic. Black coat (B) colour is dominant to chocolate coat colour (b).



(a) A homozygous black Labrador was crossed with a Labrador with a chocolate coloured coat.

Complete the diagram below to show the genotypes of each of the parents and the  $\rm F_1$  phenotype.

2

| Parent                                              | s:          | black coat          | Х                  | chocolate coat |   |
|-----------------------------------------------------|-------------|---------------------|--------------------|----------------|---|
| Genoty                                              | /pes:       |                     |                    |                |   |
| F <sub>1</sub> geno                                 | otype:      |                     | All Bb             |                |   |
| F <sub>1</sub> phe                                  | notype:     |                     |                    |                |   |
| (i) Explain what is meant by polygenic inheritance. |             |                     |                    |                | 1 |
| -                                                   |             |                     |                    |                | _ |
| (ii) S                                              | itate the t | ype of variation sh | own by polygenic i | nheritance.    | 1 |

(b)

## **Genetics Self Assessment**

# Hair type in humans is controlled by a single gene. The dominant form is curly hair (H). The recessive form (h) produces straight hair.

Both parents of this curly-haired child have the genotype Hh.

- (a) What term is used to describe the genotype of both parents?
- (b) Complete the Punnet square to show the possible genotypes of their offspring.

Н

#### Male gametes

h

| Female<br>gametes | Н |  |
|-------------------|---|--|
|                   | h |  |

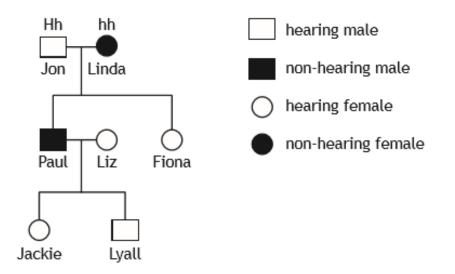
(c) State the possible genotype(s) of the girl in the picture.



1

1

MARKS


1

# **Genetics Self Assessment**

(a) One type of deafness in humans is caused by a single gene.

The diagram below shows the pattern of inheritance in one family.

H represents the hearing form of the gene. h represents the non-hearing form of the gene.



- (i) Using Jon as an example, explain how it is known that the hearing form of the gene is dominant.
- 1
- (ii) Use information in the family tree to complete the following table to show the genotype and phenotype of each individual.

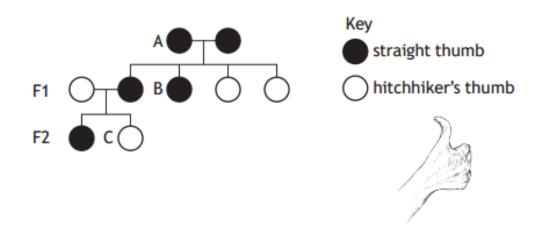
| ۰. | ,  | ۲ |
|----|----|---|
| 4  | E. |   |
|    |    |   |
|    |    |   |

1

| Individual | Genotype | Phenotype |
|------------|----------|-----------|
| Paul       |          |           |
| Lyall      |          |           |

(iii) Fiona has a child with a man who has the same genotype as her. State the chance of their child being able to hear.

Space for calculation


# **Genetics Self Assessment**

(b) Most features of an individual's phenotype are controlled by more than one gene.

Name this type of inheritance.

## **Genetics Self Assessment**

The following diagram represents part of a family tree showing the inheritance of hitchhiker's thumb, where the thumb can bend back as shown below.



(a) Complete the table below for individuals A and C.

| Individual | Possible Genotype(s) | Phenotype      |
|------------|----------------------|----------------|
| Α          |                      | straight thumb |
| В          | TT or Tt             | straight thumb |
| С          | tt                   |                |

- (b) In a survey of 90 students it was found that 25 of them had hitchhiker's thumb.
  - (i) Calculate the number of students with straight thumb to hitchhiker's thumb as a simple, whole number ratio.

Space for calculation

straight hitchhiker's thumb thumb

(ii) The predicted ratio was 3 straight thumb : 1 hitchhiker's thumb.Explain why the predicted ratio was different to the actual ratio.

1

1

## **Reproductive System & Variation—Where am I in my learning?**

#### Where am I in my learning?

#### Review 1

| State that gametes are also called sex cells.                                                                    |  |
|------------------------------------------------------------------------------------------------------------------|--|
| State the meaning of the terms haploid and diploid and give examples of each type of cell in animals and plants. |  |
| Explain why gametes are haploid.                                                                                 |  |
| Define a zygote.                                                                                                 |  |
| Explain what causes variation in populations and why it is nec-<br>essary for survival.                          |  |
| Define continuous and discrete variation and be able to give examples.                                           |  |
| Explain what is meant by polygenic inheritance.                                                                  |  |

#### My next steps are:

#### Review 2

| State that gametes are also called sex cells.                                                                    |  |
|------------------------------------------------------------------------------------------------------------------|--|
| State the meaning of the terms haploid and diploid and give examples of each type of cell in animals and plants. |  |
| Explain why gametes are haploid.                                                                                 |  |
| Define a zygote.                                                                                                 |  |
| Explain what causes variation in populations and why it is nec-<br>essary for survival.                          |  |
| Define continuous and discrete variation and be able to give examples.                                           |  |
| Explain what is meant by polygenic inheritance.                                                                  |  |

#### My next steps are:

| Plants transport the following molecules up or down the plant. |                      |  |
|----------------------------------------------------------------|----------------------|--|
| 1.                                                             |                      |  |
| 2.                                                             |                      |  |
| Plant Transport Vessels                                        |                      |  |
| 1. Phloem                                                      |                      |  |
| transports                                                     | plant.               |  |
| 2. Xylem                                                       |                      |  |
| 1. transports                                                  | plant.               |  |
| 2                                                              | _ plant via rings of |  |
|                                                                |                      |  |

Xylem diagram

Phloem diagram

| Characteristic of tube        | Xylem | Phloem |
|-------------------------------|-------|--------|
| Dead/Alive                    |       |        |
| Water/sugar                   |       |        |
| Up/down plant                 |       |        |
| Rings of lignin               |       |        |
| Sieve tubes & sieve<br>plates |       |        |
| Companion cells               |       |        |

Diagram Xylem and Phloem

## Transpiration

Transpiration Stream.

Three stage process to move water up plant through the three plant \_\_\_\_\_

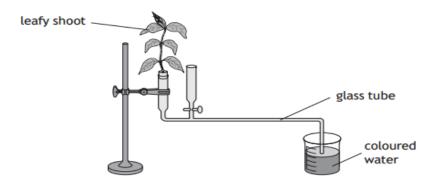
i.e.

| N | N |
|---|---|
|   |   |
|   |   |

| Stages of transpiration     |                  |                            |   |
|-----------------------------|------------------|----------------------------|---|
| 1.                          |                  |                            |   |
| Water moves from            | into             | by                         |   |
| The surface a               | rea maximises wa | ater absorption from soil. |   |
| 2.                          |                  |                            |   |
| Water moves up stem through |                  | vessels by                 |   |
| 3.                          |                  |                            |   |
| Tiny on bottom of           |                  |                            |   |
| 0                           | f water from     | by                         | · |

### Importance of Transpiration stream

1.

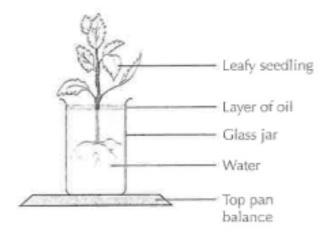

- 2.
- 3.

#### Measuring Transpiration Method 1 aka

As the plant transpires, \_\_\_\_\_\_\_ is drawn up the glass tube and its

\_•

\_measured, over a set period of time e.g \_\_\_\_\_




| Light intensity | Volume taken up in 10 minutes (ml) |
|-----------------|------------------------------------|
|                 |                                    |
|                 |                                    |
|                 |                                    |
|                 |                                    |

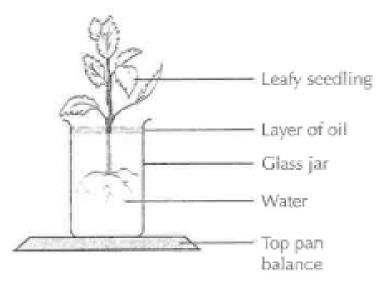
| Temperature | Volume taken up in 10 minutes (ml) |
|-------------|------------------------------------|
|             |                                    |
|             |                                    |
|             |                                    |
|             |                                    |

| Humidity | Volume taken up in 10 minutes (ml) |
|----------|------------------------------------|
|          |                                    |
|          |                                    |
|          |                                    |
|          |                                    |

### Measuring Transpiration method 2



#### Measurements taken


Start

End

#### Why oil is necessary?

As plants weigh different masses the results are usually worked out per g Calculation

## Environmental Factors affecting transpiration



| Environmental Factor                  | Increasing transpiration | Decreasing transpiration |
|---------------------------------------|--------------------------|--------------------------|
| Increasing light intensity            |                          |                          |
| Increasing wind speed                 |                          |                          |
| Increasing surface area of leaf       |                          |                          |
| Increasing temperature                |                          |                          |
| Increasing humidity<br>(water in air) |                          |                          |

## Structure of a leaf in Photosynthesis

The following cells make up a leaf and are used in the process of

------•

Structure of a leaf diagram

# Structure of a leaf

| Cell                  | Function |
|-----------------------|----------|
|                       |          |
| Cuticle               |          |
|                       |          |
|                       |          |
|                       |          |
| Upper/lower epidermis |          |
|                       |          |
|                       |          |
| Palisade mesophyll    |          |
|                       |          |
|                       |          |
|                       |          |
| Spongy mesophyll      |          |
|                       |          |
|                       |          |
|                       |          |
| Guard cell            |          |
|                       |          |
|                       |          |
| Stomata               |          |
|                       |          |
|                       |          |
|                       |          |
| Vein                  |          |
|                       |          |
|                       |          |

| Stomata & Gas Exchange |           |            |  |
|------------------------|-----------|------------|--|
| Stomata                |           |            |  |
| Tiny                   | _ on      | of leaves. |  |
| Function:              |           |            |  |
| Similar to             | in lungs. |            |  |
|                        |           |            |  |

Gas Exchange Process in Stomata

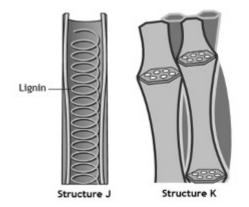
Photosynthesis

Respiration

## Stomata/Guard Cells

Guard Cells & Stomata

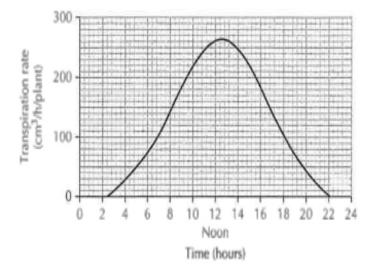
The stomata is controlled by \_\_\_\_\_\_ cells that open/close stomata according to


Stomata diagram

| Feature                            | Day | Night |
|------------------------------------|-----|-------|
| High/low light intensity           |     |       |
| Guard cells turgid/<br>plasmolysed |     |       |
| Stomata open/close                 |     |       |
| Photosynthesis high/low            |     |       |
| Preventing unnecessary water loss  |     |       |

# Structure of a leaf Summary

## Structure of a leaf Extra notes


- 1. Transpiration is the
- A evaporation of water through stomata
- B uptake of water by root hair cells
- C transport of water through xylem
- D transport of sugars through phloem.
- 2. Which environmental condition would produce the greatest transpiration stream.
- A warm and still air
- B cold and still air
- C warm and windy
- D cold and windy
- 3. The diagram below shows some of the structures involved in transport of plants.



Which line in the table below identifies correctly J and K and the substances supported by them

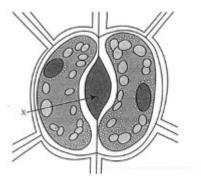
|   | Structure J |                          | Structure K |                          |
|---|-------------|--------------------------|-------------|--------------------------|
|   | Name        | Substance<br>transported | Name        | Substance<br>transported |
| Α | Xylem       | Water                    | Phloem      | Sugar                    |
| В | Xylem       | Sugar                    | Phloem      | Water                    |
| С | Phloem      | Water                    | Xylem       | Sugar                    |
| D | Phloem      | Sugar                    | Xylem       | Water                    |

- 4. The graph below shows the average transpiration rate of barley plants in an open field over
- a 24-hour period during summer in Scotland.



a) State the time period during which the average transpiration rate is greater than 100 cm<sup>3</sup> per hour per plant.

\_\_\_\_\_ cm<sup>3</sup> per hour per plant.


b) Name an environmental factors that if increased might be responsible for the transpiration rate after 12 noon.

1

1

1

c) The diagram below shows cells in the lower epidermis of a barley leaf.



Name structure X through which water evaporates through the leaves during transpiration.

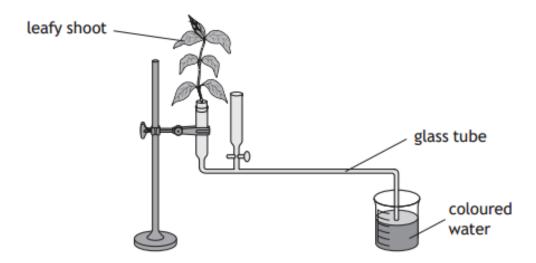
(ii) State the conditions of the guard cells that maximise photosynthesis during the day.

d) Give one advantage to the plant of carrying out the transpiration stream.

- e) Xylem vessels are also necessary for transpiration.
  - (i) State the name of the process for the transport of water through Xylem vessels.
- 1

1

1


(ii) Give one function of xylem vessels other than transport of water.

(iii) State whether xylem is alive or dead.

1

(a) The rate of transpiration in plants can be measured using the apparatus shown below.

As the plant transpires, coloured water is drawn up the glass tube and its volume measured, over a set period of time, to give the rate of transpiration.

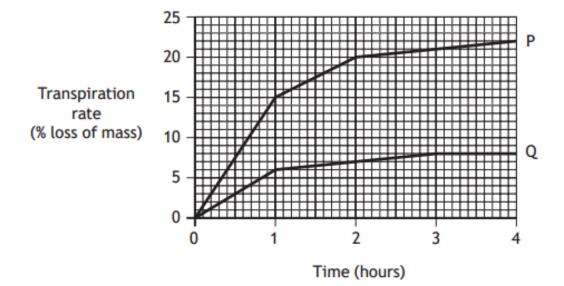


Changes in the surrounding environment can have an effect on the rate of transpiration.

 Select one of the environmental changes listed below by circling it.

| increase in | increase in | increase in |
|-------------|-------------|-------------|
| humidity    | temperature | wind speed  |

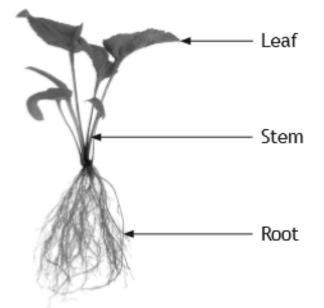
State the effect of this change on the rate of transpiration.


(ii) Choose any of the environmental changes listed above and describe an addition to the apparatus shown, which would allow an investigation into its effect.

| Environmental change |  |
|----------------------|--|
|                      |  |

| Description of addition |
|-------------------------|
| Description of addition |

1


(b) The graph below shows transpiration rates of two plants, P and Q.



- (i) With reference to the number of stomata, suggest a reason for the different transpiration rates of plants P and Q.
- (ii) Name the type of cells which control the opening and closing of stomata.

1

The diagram below shows three parts of a plant.



Describe the structures and processes involved as water moves through the plant from the soil to the air.

## Plant Transport—Where am I in my learning?

#### Where am I in my learning?

Traffic light the following I can statements to decide how well you are progressing through this sub topic.

Review 1

| Draw a diagram of xylem and phloem and label its specialisations and its respective functions.                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Explain why plants require lignin on xylem.                                                                                                                              |  |
| State whether xylem moves molecules up or down plant and whether the vessel is alive or dead.                                                                            |  |
| State what stomata are, where they are found and their two func-<br>tions.                                                                                               |  |
| Describe the state of guard cells and stomata during the day and night and explain why this is necessary.                                                                |  |
| Describe the cells and processes involved in the 3 stages of the transpiration stream.                                                                                   |  |
| Explain why the transpiration stream is necessary.                                                                                                                       |  |
| Describe how to measure the transpiration rate of plants.                                                                                                                |  |
| List some environmental factors that increase and decrease the transpiration rate of plants.                                                                             |  |
| Label the key cells involved in the structure of a leaf and state their functions which include: cuticle, epidermis, palisade/spongy mesophyll, stomata and guard cells. |  |

My next steps are:

## Plant Transport—Where am I in my learning?

#### Where am I in my learning?

Traffic light the following I can statements to decide how well you are progressing through this sub topic.

#### Review 2

| Draw a diagram of xylem and phloem and label its specialisations and its respective functions.                                                                           |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Explain why plants require lignin on xylem.                                                                                                                              |  |
| State whether xylem moves molecules up or down plant and whether the vessel is alive or dead.                                                                            |  |
| State what stomata are, where they are found and their two func-<br>tions.                                                                                               |  |
| Describe the state of guard cells and stomata during the day and night and explain why this is necessary.                                                                |  |
| Describe the cells and processes involved in the 3 stages of the transpiration stream.                                                                                   |  |
| Explain why the transpiration stream is necessary.                                                                                                                       |  |
| Describe how to measure the transpiration rate of plants.                                                                                                                |  |
| List some environmental factors that increase and decrease the transpiration rate of plants.                                                                             |  |
| Label the key cells involved in the structure of a leaf and state their functions which include: cuticle, epidermis, palisade/spongy mesophyll, stomata and guard cells. |  |

My next steps are: